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Motivation

IO congestion in HPC systems:
I HPC applications are generating lots

of data for PFS.
I Idea is to use a buffer when the I/O

bandwidth is fully occupied
I The buffer can be emptied at a later

time. Burst-buffers to absorb IO peaks
Source: DDN ad material.
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Application Context

Main transfer source in large HPC applications: checkpoints (⇒ predictable)

Possible usages for Burst-buffers:
I accelerate one application by caching writes
I hide contention coming from several applications writing at the same time

And with BigData applications coming:
I prefetch input data
I cache for temporary data
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Platform model

PFS

IO Nodes Burst Buffers
(size S)

Compute Nodes

BrBw

Applications run on Compute Nodes
I Placement already done

Two buffer management policies:
I Static: size Sk alloted to application
Ak for its lifetime

I Dynamic: size devoted to Ak can
change over time
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Application model

Set of applications Ak running independently on the platform:
I with release date rk , read and write bandwidth br

k and bw
k

I consisting of nk phases (without overlap):
I Read a volume of Rk

i input data starts at t r
i,k

I Compute for lk
i amount of time starts at tc

i,k
I Write a volume of W k

i output data starts at tw
i,k

I No overlap: data available from the start, but two phases do not fit in memory

Earliest possible completion time:

Cmin
k = rk +

nk∑
i=1

(
Rk

i
br

k
+ lk

i + W k
i

bw
k

) Stretch of Ak :

s(Ak) = Ck
Cmin

k
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Execution model
Ak

BBs

PFS
f r
k + i r

k

f r
k

i r
k iw

k

f r
k + iw

k

t

rate

tr
k,1 tc

k,1 tw
k,1 tr

k,2 tc
k,2

br
k

read compute write read

i r
k(t)

Dominant schedules: all transfer rates constant between time events
Completely determined by the amount of data transferred at each event
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Problem formulations – both Static and Dynamic

Static-Buffer-Size(ρ) and Dynamic-Buffer-Size(ρ)
Given n applications (Ak), and a stretch limit ρ, minimize the total buffer size S
necessary to achieve stretch ρ.

Static-Stretch(S) and Dynamic-Stretch(S)
Given n applications (Ak), and a buffer size S, minimize the maximum stretch over all
applications

Results
I X-Stretch(0) is NP-complete
I X-Buffer-Size(ρ) is NP-complete for 1 < ρ ≤ 2
I Static-Stretch(S) is NP-complete for all S

I X-Buffer-Size(1) can be solved in polynomial time
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Scheduling a single application
Aiming for stretch 1 (Ck = Cmin

k ) fixes the values of t∗i ,k

time

Size of data

W∞
k (t), written to PFS if Bw =∞

wk(t), written to PFS if Bw < bw
k

tr
k,1 tc

k,1 tw
k,1 tr

k,2 tw
k,2 tw

k,3 Cmin
k
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Linear Programming Formulation
Consider all events {el} = {t∗k,i}: variables w l

k and r l
k , variable S for buffer size

Minimize S subject to:
∀l , W ∞

k (el)− w l
k︸ ︷︷ ︸

output data

+ r l
k − R∞

k (el)︸ ︷︷ ︸
input data

≤ S Data stored in buffer

∀l , w l
k ≤ w l+1

k Amount of data is non-decreasing
∀l , w l

k ≤W ∞
k (el) Can not write more than app. sends

∀l , w l+1
k − w l

k ≤ Bw (el+1 − el) Can not write faster than PFS accepts

∀l , r l
k ≤ r l+1

k Amount of data is non-decreasing
∀l , r l

k ≥ R∞
k (el) Must read at least what app. needs

∀l , r l+1
k − r l

k ≤ Br (el+1 − el) Can not read faster than PFS provides

∀l , w l+1
k − w l

k + r l+1
k − r l

k ≤ B(el+1 − ek) Total bandwidth not exceeded
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For several applications
Compute all events {el} = {t∗k,i} for all applications Ak , in increasing order
Variables: w l

k and r l
k , S l

k (buffer size of Ak at event el)

Minimize S subject to:
∀l ,

∑
k

Sk
l ≤ S Total buffer size

∀l , k W ∞
k (el)− w l

k + r l
k − R∞

k (el) ≤ S l
k Data stored in buffer

∀k, l ∈ Ik S l
k = Sk Static constraint

∀l , k w l
k ≤ w l+1

k Amount of data is non-decreasing
∀l , k w l

k ≤W ∞
k (el) Can not write more than app. sends

∀l ,
∑

k
w l+1

k − w l
k ≤ Bw (el+1 − el) Can not write faster than PFS accepts

· · · · · · [Read constraints]
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Settings: applications from LANL Computing Center

Workflow EAP LAP Silverton VPIC
Frequency 65 21 8 6

# cores (1000) 16 4 32 30
Ckpt size (GB) 3,200 2,000 44,800 3,750
Walltime (hours) 16 4 32 30

Platform characteristics:
96, 000 cores
B = 160GB/s
b = 20MB/s per core

Period P =
√
2C µ

#nodes
5 years ≤ µ ≤ 50 years

Generating instances
I Fix load ρ to 20, 50 or 80%
I Pick 30 applications according to Frequency
I Scheduling them FIFO yields release times
I Compute maximum average bandwidth requirement
I Scale checkpoint size to achieve max. load ρ
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Settings

Greedy strategy
I Ak is active if it is in a write-phase or has data in its buffer
I Bandwidth to the PFS is equally shared between all active applications
I Ak sends data at maximum rate bw

k if its buffer has available space
I Otherwise, Ak is limited to the available bandwidth to PFS

Methodology
I For each instance, compute SOPT and SOPT

k with Static-Buffer-Size(1)
I S varies between 0 and 3SOPT, scale Sk accordingly
I Apply Greedy strategy, compute maximum stretch
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Results

MTBF: 25 MTBF: 50

MTBF: 5 MTBF: 10
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Overhead of Static vs Dynamic

Compare the optimal solutions with and without the Static constraint

Load \ MTBF 5 y 10 y 25 y 50 y
20% 1.32 1.31 1.42 1.67
50% 1.33 1.28 1.26 1.47
80% 1.23 1.26 1.25 1.35

Static constraint yields roughly 30% overhead
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Conclusions

Remarks about model
I Previous paper [IPDPS’18]: random application behavior, Markov Chain modeling
I Here: all phases of applications are known, Linear Programming optimal solution

Perspectives
I Within this model: efficient strategies for small buffer size
I Extend the model: data reuse, temporary checkpoint data
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