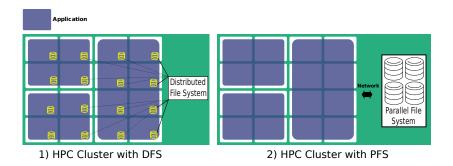
Convergence between HPC and Big Data: Simulating the File System

Adrien Faure^{1,2}, Michael Mercier^{1,2}, Olivier Richard¹

Janvier 2019


How well a workload composed of Big data applications can run on a HPC platform ?

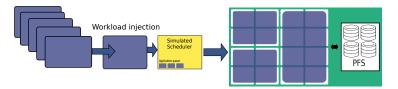
- Big data applications respond to the need to analyse a large volume of data.
- In a HPC production environment applications share the file system, this can lead to IO contentions.
- The file system becomes the bottleneck.
- What file system should we use, a distributed file system or a parallel file system?
- We use our simulator, Batsim to answer the question.

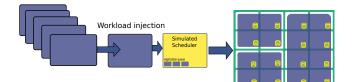
HPC applications versus Big Data applications

Applications	Big Data	HPC
Infrastructure	Heterogeneous	Dedicated for HPC
Computations	Move computations	Move the data to the computations.
	where the data is located.	
I/O pattern	Read large quantity of data	Periodic (due to checkpointing)
	(that does not fit in one node)	Bursty (sometime short IO bursts occur)
File System	Use a distributed filesystem	Uses a parallel file system (PFS)
		(shared between all applications)

Parallel File System(PFS) vs Distributed File System (DFS)

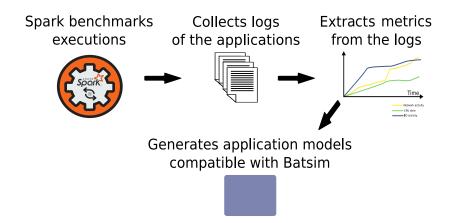
Distributed file system uses the local disks of the compute nodes.
Parallel file system is shared between all applications.

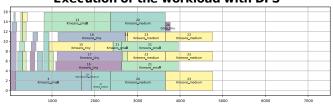

Batsim: Infrastructure simulator


Infrastructure simulator for scheduling

- It simulates the scheduler of the platform.
- It simulates a workload of applications and their IO consumption.
- It simulates the platform, with a PFS or a DFS.

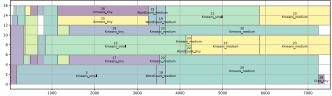
Experimentation


Two platform set up.

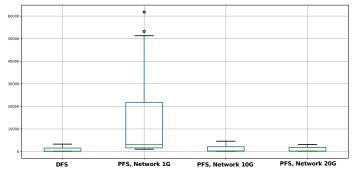


Application model from spark traces

We use the logs to extract models to incorporate in our simulator.



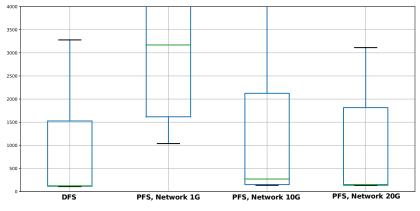
Gantt chart of the results



Execution of the workload with DFS

Execution of the workload with PFS

Execution times of applications



Execution time of applications

File system, Network bandwith

Execution times of applications

Execution time of applications (zoomed)

File system, Network bandwith

Conclusions and Future Work

In conclusion:

- We simulate interferences between applications with a PFS versus a DFS.
- The big data applications are slower with a PFS than with a DFS, which supports the results of Yildiz et al.

In future work:

- Create application models for HPC applications and workloads.
- Impact of big data workload on HPC platform with batsim.