
Using differential execution
analysis to identify contention

Mohamed Mosli, François Trahay, Alexis Lescouet, Gauthier Voron, Rémi
Dulong, Amina Guermouche, Élisabeth Brunet, Gaël Thomas

2

Contention on shared resources
 Multiple resources are shared

• Memory hierarchy (caches, NUMA nodes, …)

• Peripheral devices (hard drive, network card, …)

• Software resources (locks, …)

Available resources on a computer

3

Contention on shared resources
 Multiple resources are shared

• Memory hierarchy (caches, NUMA nodes, …)

• Peripheral devices (hard drive, network card, …)

• Software resources (locks, …)

 How to detect the source of a slowdown ?

• Log resource usage

• Measure software indicators

• Use hardware counters

 If there is a problem, is it bad for

 performance ?
Available resources on a computer

I/O rate:
178MB/s

Net rate:
107MB/s load:

7.3GB/s

imbalance:
198%

ctx switch:
12.103/s

LLC miss
57.103/s

stall cycles
93.106/s

4

Differential execution analysis
 EZTrace
• Intercept calls to “interesting” functions

- eg. MPI, OpenMP, posix IO, ...

• Generate execution traces

• Available as open-source:
http://eztrace.gforge.inria.fr

 Analyzing traces
• Using visualization tools

- eg. ViTE, Vampir, …

• Differential execution analysis
- Detect sequences of events that repeat
- Compare occurrences of sequences

5

Detecting thread contention
 Slowdown Caused by Interference (SCI)
• If function foo can execute in 2µs once, longer execution can be caused by:

- Access to a contented resource
- Execution of a different path
- Execution is dependent on at least one parameter

• SCI = Theoretical speedup if all calls to foo lasted 2µs

 Can be applied to detect various types of interference
• Lock contention, IO contention, Network contention, Memory placement, false-

sharing, ...

→ Universal indicator for contention

foo foo foo foo foo foo speedup

6

Evaluation
 Panel of 27 applications
• NAS Parallel benchmarks (7 applications)

• Parsec (4 applications)

• Splash-2 (7 applications)

• Phoenix2 (7 applications)

• LevelDB with write-intensive workload

• Memcached with write-intensive workload

 hardware configuration
• 48 core NUMA machine

 Results

• 11 applications have high SCI score

• 12 interference problems
- IO contention, lock contention, false-

sharing, NUMA, network, parallelism)

• Significant performance improvement once
fixed

• Few false-positive

7

Evaluation: NPB DC
 NAS Parallel Benchmarks: DC kernel
• Data-mining application

• Profiling shows 4 hot functions
- KeyComp, MultiWayMerge, memcpy, fwrite

→ instrument these functions

• EZTrace generates a 17GiB trace (with 364 million
events)

• Two high SCI scores
- MultiWayMerge (false-positive)
- Fwrite

– Called with data size ranging from 1 to 24 bytes

– Here, data size does not impact the function
completion time

8

Analyzing fwrite calls in DC
 Distribution of completion time

• 98.1% < 1µs

• 99.8% < 10µs

• 99.97% < 100µs

• 0.03% of calls (1274) contribute to 44% of the total time

9

Improving DC performance
 Hard to improve the performance of the application

• Requires to rewrite large parts of the code
 Running DC on a RAMFS partition

• Improve the performance by 68%
- Better throughput than hard disk

• SCI score: 0.17 (compared to 0.83 with hard disk)
- Lower contention on the IO stack

10

Conclusion & Future work
 Differential execution analysis

• Universal indicator for contention
- Can detect IO contention, network contention, lock contention, memory

issues (eg. false sharing), …

• Evaluation on 27 applications
- 12 problems were detected

 Future work

• From a research prototype to production software
- As part of the IDIOM FUI project
- Extend EZTrace to other IO paradigms (MPI-IO, Hadoop, ...)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10

