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Introduction

I Funded by Inria IPL on convergence between Big Data, HPC and Learning
I IPL gathers researchers from these 3 communities
I HPC for Deep Learning in the context of Pl@ntNet. Work with Alexis Joly

(Inria Montpellier), co-supervisor of the PhD
I They have parallel training algorithms already
I Pl@ntNet is complex and big (in terms on nb of species and memory)
I Parallelism and Scheduling for training will be used to go faster and go

larger (better model, more species, better accuracy)



Outline

Pl@ntNet

DL Training: Forward and backward propagations, a computational perspective

Where to find parallelism ?

Scheduling re-computations to use less memory



Pl@ntNet

An innovative citizen science platform making use of machine learning to help
people identify plants through their mobile phone



Application

Professional usage

I Agriculture & Agri-food industry
I Education & animation
I Professional botanists, consulting, expertise
I Merchants
I Natural area management
I Tourism

Research Projects

I Invasive species distribution models
I Pl@ntHealth: automated plant epidemiology



Statistics

I More than 8M downloads
I Between 60k - 100K users / day
I 11 languages
I 17K species (illustrated by 1M revised images)
I 22 projects & micro-projects
I 35M raw plant images / 55M users sessions
I 12K followers on social networks

In 2018 : 3,352,788 users in 235 countries

Target

I recognize 300K species
I requires richer database and
I more sophisticated models



Pl@ntNet technology
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DL training phase: computational DAG

DNN: a DAG (googlenet)
Node of the DAG
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for instance, fi = RELU(Wx + b)



DL: supervised learning process

Principe

I Start with an example (x , y)

I Evaluate x using the DAG (as for a classical DAG)
I Evaluate the loss at the end
I Do the backward propagation of the gradient to evaluate the sensitivity of

loss to input parameters (almost as for a classical DAG)
I Update the weights ? speed (and more generally optimization theory

issues) is out of scope
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Backward propagation example f = ‖Wx‖2
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Distributed DL: forward propagation and backward propagation
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DL: forward propagation and backward propagation

Important issues with respect to memory usage

I keep W and update it (depends on the layer type)
I receive x (1) et x (2) and keep them until backward propagation
I compute and send y (1) et y (2)

I receive ∇y (1) f and ∇y (2) f (same size as y (1) et y (2))

I compute and send ∇x(1) f and ∇x(2) f (same size x (1) et x (2))
I compute ∇W f and update W
I the overall DAG is: forward + loss + backward + extra dependencies:

I (x(1), x(2)) needed during the backpropagation
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How to find parallelism (I) ? hyper parameters tuning

I There are many hyper parameters to determine...

and in many cases no
clear algorithm to do it beyond brute force

I Parallel algorithm
I try several hyper parameters sets
I choose the most promising ones
I possibly reallocate resources

I Easy way to achieve good parallel scalability
I at least at the beginning, i.e. before hyper parameters are determined.
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How to find parallelism (II) ? data parallelism

I In practice, use of mini-batches
I aggregate several (x , y) pairs
I transform vectors into matrices
I to keep GPUs happy

I In practice, does not affect convergence if mini-batches are small enough.

I Data parallelism (the one used for Pl@ntnet at the moment)
I perform several mini-batches in parallel
I compute ∇W f for each mini-batch in parallel
I sum the different ∇W f using MPI_Reduce like algorithm.

I first drawback:
I requires to communicate all W s
I and is equivalent to use a large mini-batch size
I and thus can generate convergence issues (increase the number of epochs)
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What are the limitations of above approaches in the context of Pl@ntnet ?

I hyper parameter tuning and data parallelism
I enable to increase parallelism

I but do not help to solve memory issues
I since the exact same model has to be stored on each node

I In the context of Pl@ntnet, we need to consider
I larger models (parametrized models)
I larger batch sizes on each GPU

I Potential solutions
1. work more, stock less (the end of this talk)

I optimal checkpointing strategies
I to do extra computations to save memory

2. communicate more, store less (the end of this thesis)
I use model parallelism
I split the model across several nodes
I communicate forward and backward activations between nodes
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Single Adjoint Chain Computation problem

F0 · · · Fi−2 Fi−1 Fi · · · Fl−1

F̄0 · · · F̄i−2 F̄i−1 F̄i · · · F̄l−1 F̄l

x0 x1 xi−2 xi−1 xi xi+1 xl−1

xl

x̄lx̄l−1x̄i+1x̄ix̄i−1x̄i−2x̄1x̄0

x0 x1 xi−2 xi−1 xi xi+1 xl−1

Figure: The data dependencies in the AC chain.

Opt0(l , 1) =
l(l + 1)

2
uf + (l + 1)ub

Opt0(1, c) = uf + 2ub
Opt0(l , cm) = min

1≤i≤l−1
{iuf + Opt0(l − i , cm − 1) + Opt0(i − 1, cm)}



Multiple Adjoint Chain Computation problem
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Figure: The data dependencies in the multiple adjoint chain with two branches.

I A much more complicated Dynamic Programming solves above problem
I Generalization to trees, series parallel and DAGs are needed (but will be

hard)



Conclusion

I DL training phase and Parallelism
I Memory issues are crucial for Pl@ntNet
I Scalability is not difficult to achieve

I At the moment, we concentrate on the single node case
I We implemented optimal checkpointing strategy for homogeneous chains in

PyTorch

I Can be combined with model parallelism to further save memory
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