
Optimization of Deep Learning for Pl@ntnet:
work more and stock less

Alena Shilova,
with Guillaume Aupy, Olivier Beaumont, Lionel Eyraud-Dubois,

Julien Herrmann and Alexis Joly
January 24, 2019

Introduction

I Funded by Inria IPL on convergence between Big Data, HPC and Learning
I IPL gathers researchers from these 3 communities
I HPC for Deep Learning in the context of Pl@ntNet. Work with Alexis Joly

(Inria Montpellier), co-supervisor of the PhD
I They have parallel training algorithms already
I Pl@ntNet is complex and big (in terms on nb of species and memory)
I Parallelism and Scheduling for training will be used to go faster and go

larger (better model, more species, better accuracy)

Outline

Pl@ntNet

DL Training: Forward and backward propagations, a computational perspective

Where to find parallelism ?

Scheduling re-computations to use less memory

Pl@ntNet

An innovative citizen science platform making use of machine learning to help
people identify plants through their mobile phone

Application

Professional usage

I Agriculture & Agri-food industry
I Education & animation
I Professional botanists, consulting, expertise
I Merchants
I Natural area management
I Tourism

Research Projects

I Invasive species distribution models
I Pl@ntHealth: automated plant epidemiology

Statistics

I More than 8M downloads
I Between 60k - 100K users / day
I 11 languages
I 17K species (illustrated by 1M revised images)
I 22 projects & micro-projects
I 35M raw plant images / 55M users sessions
I 12K followers on social networks

In 2018 : 3,352,788 users in 235 countries

Target

I recognize 300K species
I requires richer database and
I more sophisticated models

Pl@ntNet technology

Outline

Pl@ntNet

DL Training: Forward and backward propagations, a computational perspective

Where to find parallelism ?

Scheduling re-computations to use less memory

DL training phase: computational DAG

DNN: a DAG (googlenet)
Node of the DAG

Nodei , function fi

x (1)
(size in1)

W , b (size di)

x
(2) (siz

e in2)

y
(1) (ou

t1)

y (2)
(out2)

for instance, fi = RELU(Wx + b)

DL: supervised learning process

Principe

I Start with an example (x , y)

I Evaluate x using the DAG (as for a classical DAG)
I Evaluate the loss at the end
I Do the backward propagation of the gradient to evaluate the sensitivity of

loss to input parameters (almost as for a classical DAG)
I Update the weights ? speed (and more generally optimization theory

issues) is out of scope

Forward propagation example: f = ‖Wx‖2

× ‖ ‖2

W
=

(
0.1

0.5
−0.3

0.8
)

x =

(0.2
0.4

)

q = Wx =

(
0.22
0.26

)
f = ‖q‖2 = 0.116

Forward propagation example: f = ‖Wx‖2

× ‖ ‖2

W
=

(
0.1

0.5
−0.3

0.8
)

x =

(0.2
0.4

)
q = Wx =

(
0.22
0.26

)

f = ‖q‖2 = 0.116

Forward propagation example: f = ‖Wx‖2

× ‖ ‖2

W
=

(
0.1

0.5
−0.3

0.8
)

x =

(0.2
0.4

)
q = Wx =

(
0.22
0.26

)
f = ‖q‖2 = 0.116

Backward propagation example f = ‖Wx‖2

× ‖ ‖2

W
=

(
0.1

0.5
−0.3

0.8
)

x =

(0.2
0.4

)
q = Wx =

(
0.22
0.26

)
f = ‖q‖2 = 0.116

∇f f = 1

I f = q2
1 + q2

2 −→ ∇qf = 2q
I q = Wx −→ ∂f

∂xi
= ∂f

∂q1
∂q1
∂xi

+ ∂f
∂q2

∂q2
∂xi

= 2q1W1,1 + 2q2W2,1 et
∇x f = 2W Tq = W T∇qf

I q = Wx −→ ∂f
∂Wi,j

= ∂f
∂q1

∂q1
∂Wi,j

+ ∂f
∂q2

∂q2
∂Wi,j

= qixj et ∇W f = 2qxT = ∇qfx
T

Backward propagation example f = ‖Wx‖2

× ‖ ‖2

W
=

(
0.1

0.5
−0.3

0.8
)

x =

(0.2
0.4

)
q = Wx =

(
0.22
0.26

)
f = ‖q‖2 = 0.116

∇f f = 1
∇q f =

(
0.44
0.52

)

I f = q2
1 + q2

2 −→ ∇qf = 2q

I q = Wx −→ ∂f
∂xi

= ∂f
∂q1

∂q1
∂xi

+ ∂f
∂q2

∂q2
∂xi

= 2q1W1,1 + 2q2W2,1 et
∇x f = 2W Tq = W T∇qf

I q = Wx −→ ∂f
∂Wi,j

= ∂f
∂q1

∂q1
∂Wi,j

+ ∂f
∂q2

∂q2
∂Wi,j

= qixj et ∇W f = 2qxT = ∇qfx
T

Backward propagation example f = ‖Wx‖2

× ‖ ‖2

W
=

(
0.1

0.5
−0.3

0.8
)

x =

(0.2
0.4

)
q = Wx =

(
0.22
0.26

)
f = ‖q‖2 = 0.116

∇f f = 1
∇q f =

(
0.44
0.52

)

∇x
f =

(−0.1
12

0.6
36

)

∇
W f =

(
0.088

0.104

0.176
0.208

)

I f = q2
1 + q2

2 −→ ∇qf = 2q
I q = Wx −→ ∂f

∂xi
= ∂f

∂q1
∂q1
∂xi

+ ∂f
∂q2

∂q2
∂xi

= 2q1W1,1 + 2q2W2,1 et
∇x f = 2W Tq = W T∇qf

I q = Wx −→ ∂f
∂Wi,j

= ∂f
∂q1

∂q1
∂Wi,j

+ ∂f
∂q2

∂q2
∂Wi,j

= qixj et ∇W f = 2qxT = ∇qfx
T

Distributed DL: forward propagation and backward propagation

Nodei

W (size di)

x (1)
(size in1)

x
(2) (siz

e in2)

y
(1) (ou

t1)

y (2)
(out2)

∇ y
(1)

f (ou
t1)

∇
y (2) f (out2)

∇
x (1) f (in1)

∇ x
(2)

f (in2)

∇W f + update

I ∂f

∂x
(1)
i

= ∂f

∂y (1)
∂y (1)

∂x
(1)
i

+ ∂f

∂y (2)
∂y (2)

∂x
(1)
i

∂f

∂x
(2)
i

= ∂f

∂y (1)
∂y (1)

∂x
(2)
i

+ ∂f

∂y (2)
∂y (2)

∂x
(2)
i

I ∂f
∂Wi

= ∂f

∂y (1)
∂y (1)

∂Wi
+ ∂f

∂y (2)
∂y (2)

∂Wi

DL: forward propagation and backward propagation

Important issues with respect to memory usage

I keep W and update it (depends on the layer type)
I receive x (1) et x (2) and keep them until backward propagation
I compute and send y (1) et y (2)

I receive ∇y (1) f and ∇y (2) f (same size as y (1) et y (2))

I compute and send ∇x(1) f and ∇x(2) f (same size x (1) et x (2))
I compute ∇W f and update W
I the overall DAG is: forward + loss + backward + extra dependencies:

I (x(1), x(2)) needed during the backpropagation

Outline

Pl@ntNet

DL Training: Forward and backward propagations, a computational perspective

Where to find parallelism ?

Scheduling re-computations to use less memory

How to find parallelism (I) ? hyper parameters tuning

I There are many hyper parameters to determine...

and in many cases no
clear algorithm to do it beyond brute force

I Parallel algorithm
I try several hyper parameters sets
I choose the most promising ones
I possibly reallocate resources

I Easy way to achieve good parallel scalability
I at least at the beginning, i.e. before hyper parameters are determined.

How to find parallelism (I) ? hyper parameters tuning

I There are many hyper parameters to determine... and in many cases no
clear algorithm to do it beyond brute force

I Parallel algorithm
I try several hyper parameters sets

I choose the most promising ones
I possibly reallocate resources

I Easy way to achieve good parallel scalability
I at least at the beginning, i.e. before hyper parameters are determined.

How to find parallelism (I) ? hyper parameters tuning

I There are many hyper parameters to determine... and in many cases no
clear algorithm to do it beyond brute force

I Parallel algorithm
I try several hyper parameters sets
I choose the most promising ones

I possibly reallocate resources

I Easy way to achieve good parallel scalability
I at least at the beginning, i.e. before hyper parameters are determined.

How to find parallelism (I) ? hyper parameters tuning

I There are many hyper parameters to determine... and in many cases no
clear algorithm to do it beyond brute force

I Parallel algorithm
I try several hyper parameters sets
I choose the most promising ones
I possibly reallocate resources

I Easy way to achieve good parallel scalability
I at least at the beginning, i.e. before hyper parameters are determined.

How to find parallelism (I) ? hyper parameters tuning

I There are many hyper parameters to determine... and in many cases no
clear algorithm to do it beyond brute force

I Parallel algorithm
I try several hyper parameters sets
I choose the most promising ones
I possibly reallocate resources

I Easy way to achieve good parallel scalability
I at least at the beginning, i.e. before hyper parameters are determined.

How to find parallelism (II) ? data parallelism

I In practice, use of mini-batches
I aggregate several (x , y) pairs
I transform vectors into matrices
I to keep GPUs happy

I In practice, does not affect convergence if mini-batches are small enough.

I Data parallelism (the one used for Pl@ntnet at the moment)
I perform several mini-batches in parallel
I compute ∇W f for each mini-batch in parallel
I sum the different ∇W f using MPI_Reduce like algorithm.

I first drawback:
I requires to communicate all W s
I and is equivalent to use a large mini-batch size
I and thus can generate convergence issues (increase the number of epochs)

How to find parallelism (II) ? data parallelism

I In practice, use of mini-batches
I aggregate several (x , y) pairs
I transform vectors into matrices
I to keep GPUs happy

I In practice, does not affect convergence if mini-batches are small enough.
I Data parallelism (the one used for Pl@ntnet at the moment)

I perform several mini-batches in parallel
I compute ∇W f for each mini-batch in parallel
I sum the different ∇W f using MPI_Reduce like algorithm.

I first drawback:
I requires to communicate all W s
I and is equivalent to use a large mini-batch size
I and thus can generate convergence issues (increase the number of epochs)

How to find parallelism (II) ? data parallelism

I In practice, use of mini-batches
I aggregate several (x , y) pairs
I transform vectors into matrices
I to keep GPUs happy

I In practice, does not affect convergence if mini-batches are small enough.
I Data parallelism (the one used for Pl@ntnet at the moment)

I perform several mini-batches in parallel

I compute ∇W f for each mini-batch in parallel
I sum the different ∇W f using MPI_Reduce like algorithm.

I first drawback:
I requires to communicate all W s
I and is equivalent to use a large mini-batch size
I and thus can generate convergence issues (increase the number of epochs)

How to find parallelism (II) ? data parallelism

I In practice, use of mini-batches
I aggregate several (x , y) pairs
I transform vectors into matrices
I to keep GPUs happy

I In practice, does not affect convergence if mini-batches are small enough.
I Data parallelism (the one used for Pl@ntnet at the moment)

I perform several mini-batches in parallel
I compute ∇W f for each mini-batch in parallel

I sum the different ∇W f using MPI_Reduce like algorithm.
I first drawback:

I requires to communicate all W s
I and is equivalent to use a large mini-batch size
I and thus can generate convergence issues (increase the number of epochs)

How to find parallelism (II) ? data parallelism

I In practice, use of mini-batches
I aggregate several (x , y) pairs
I transform vectors into matrices
I to keep GPUs happy

I In practice, does not affect convergence if mini-batches are small enough.
I Data parallelism (the one used for Pl@ntnet at the moment)

I perform several mini-batches in parallel
I compute ∇W f for each mini-batch in parallel
I sum the different ∇W f using MPI_Reduce like algorithm.

I first drawback:
I requires to communicate all W s
I and is equivalent to use a large mini-batch size
I and thus can generate convergence issues (increase the number of epochs)

How to find parallelism (II) ? data parallelism

I In practice, use of mini-batches
I aggregate several (x , y) pairs
I transform vectors into matrices
I to keep GPUs happy

I In practice, does not affect convergence if mini-batches are small enough.
I Data parallelism (the one used for Pl@ntnet at the moment)

I perform several mini-batches in parallel
I compute ∇W f for each mini-batch in parallel
I sum the different ∇W f using MPI_Reduce like algorithm.

I first drawback:
I requires to communicate all W s
I and is equivalent to use a large mini-batch size
I and thus can generate convergence issues (increase the number of epochs)

What are the limitations of above approaches in the context of Pl@ntnet ?

I hyper parameter tuning and data parallelism
I enable to increase parallelism

I but do not help to solve memory issues
I since the exact same model has to be stored on each node

I In the context of Pl@ntnet, we need to consider
I larger models (parametrized models)
I larger batch sizes on each GPU

I Potential solutions
1. work more, stock less (the end of this talk)

I optimal checkpointing strategies
I to do extra computations to save memory

2. communicate more, store less (the end of this thesis)
I use model parallelism
I split the model across several nodes
I communicate forward and backward activations between nodes

What are the limitations of above approaches in the context of Pl@ntnet ?

I hyper parameter tuning and data parallelism
I enable to increase parallelism
I but do not help to solve memory issues
I since the exact same model has to be stored on each node

I In the context of Pl@ntnet, we need to consider
I larger models (parametrized models)
I larger batch sizes on each GPU

I Potential solutions
1. work more, stock less (the end of this talk)

I optimal checkpointing strategies
I to do extra computations to save memory

2. communicate more, store less (the end of this thesis)
I use model parallelism
I split the model across several nodes
I communicate forward and backward activations between nodes

What are the limitations of above approaches in the context of Pl@ntnet ?

I hyper parameter tuning and data parallelism
I enable to increase parallelism
I but do not help to solve memory issues
I since the exact same model has to be stored on each node

I In the context of Pl@ntnet, we need to consider
I larger models (parametrized models)
I larger batch sizes on each GPU

I Potential solutions
1. work more, stock less (the end of this talk)

I optimal checkpointing strategies
I to do extra computations to save memory

2. communicate more, store less (the end of this thesis)
I use model parallelism
I split the model across several nodes
I communicate forward and backward activations between nodes

What are the limitations of above approaches in the context of Pl@ntnet ?

I hyper parameter tuning and data parallelism
I enable to increase parallelism
I but do not help to solve memory issues
I since the exact same model has to be stored on each node

I In the context of Pl@ntnet, we need to consider
I larger models (parametrized models)
I larger batch sizes on each GPU

I Potential solutions
1. work more, stock less (the end of this talk)

I optimal checkpointing strategies
I to do extra computations to save memory

2. communicate more, store less (the end of this thesis)
I use model parallelism
I split the model across several nodes
I communicate forward and backward activations between nodes

What are the limitations of above approaches in the context of Pl@ntnet ?

I hyper parameter tuning and data parallelism
I enable to increase parallelism
I but do not help to solve memory issues
I since the exact same model has to be stored on each node

I In the context of Pl@ntnet, we need to consider
I larger models (parametrized models)
I larger batch sizes on each GPU

I Potential solutions
1. work more, stock less (the end of this talk)

I optimal checkpointing strategies
I to do extra computations to save memory

2. communicate more, store less (the end of this thesis)

I use model parallelism
I split the model across several nodes
I communicate forward and backward activations between nodes

What are the limitations of above approaches in the context of Pl@ntnet ?

I hyper parameter tuning and data parallelism
I enable to increase parallelism
I but do not help to solve memory issues
I since the exact same model has to be stored on each node

I In the context of Pl@ntnet, we need to consider
I larger models (parametrized models)
I larger batch sizes on each GPU

I Potential solutions
1. work more, stock less (the end of this talk)

I optimal checkpointing strategies
I to do extra computations to save memory

2. communicate more, store less (the end of this thesis)
I use model parallelism
I split the model across several nodes
I communicate forward and backward activations between nodes

Outline

Pl@ntNet

DL Training: Forward and backward propagations, a computational perspective

Where to find parallelism ?

Scheduling re-computations to use less memory

Single Adjoint Chain Computation problem

F0 · · · Fi−2 Fi−1 Fi · · · Fl−1

F̄0 · · · F̄i−2 F̄i−1 F̄i · · · F̄l−1 F̄l

x0 x1 xi−2 xi−1 xi xi+1 xl−1

xl

x̄lx̄l−1x̄i+1x̄ix̄i−1x̄i−2x̄1x̄0

x0 x1 xi−2 xi−1 xi xi+1 xl−1

Figure: The data dependencies in the AC chain.

Opt0(l , 1) =
l(l + 1)

2
uf + (l + 1)ub

Opt0(1, c) = uf + 2ub
Opt0(l , cm) = min

1≤i≤l−1
{iuf + Opt0(l − i , cm − 1) + Opt0(i − 1, cm)}

Multiple Adjoint Chain Computation problem

F
(1)
0 F

(1)
1 · · · F

(1)
l1−1

F̄
(1)
0 F̄

(1)
1 · · · F̄

(1)
l1−1

F
(2)
0 · · · F

(2)
l2−1

F̄
(2)
0 · · · F̄

(2)
l2−1

P

x
(1)
0 x

(1)
1 x

(1)
2 x

(1)
l1−1

x
(1)
l1

x̄
(1)
l1

x̄
(1)
l1−1x̄

(1)
2x̄

(1)
1x̄

(1)
0

x
(1)
0 x

(1)
1 x

(1)
2

x
(1)
l1−1

x
(2)
0 x

(2)
1 x

(2)
l2−1

x
(2)
l2

x̄
(2)
l2

x̄
(2)
l2−1x̄

(2)
1x̄

(2)
0

x
(2)
0 x

(2)
1

x
(2)
l2−1

Figure: The data dependencies in the multiple adjoint chain with two branches.

I A much more complicated Dynamic Programming solves above problem
I Generalization to trees, series parallel and DAGs are needed (but will be

hard)

Conclusion

I DL training phase and Parallelism
I Memory issues are crucial for Pl@ntNet
I Scalability is not difficult to achieve

I At the moment, we concentrate on the single node case
I We implemented optimal checkpointing strategy for homogeneous chains in

PyTorch

I Can be combined with model parallelism to further save memory

	Pl@ntNet
	DL Training: Forward and backward propagations, a computational perspective
	Where to find parallelism ?
	Scheduling re-computations to use less memory

