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Introduction

v

v

Funded by Inria IPL on convergence between Big Data, HPC and Learning
IPL gathers researchers from these 3 communities

HPC for Deep Learning in the context of PI@ntNet. Work with Alexis Joly
(Inria Montpellier), co-supervisor of the PhD

They have parallel training algorithms already
Pl@ntNet is complex and big (in terms on nb of species and memory)

Parallelism and Scheduling for training will be used to go faster and go
larger (better model, more species, better accuracy)



Outline

Pl@ntNet



Pl@ntNet

An innovative citizen science platform making use of machine learning to help
people identify plants through their mobile phone
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Application

Professional usage
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Agriculture & Agri-food industry

Education & animation

Professional botanists, consulting, expertise
Merchants

Natural area management

Tourism

Research Projects

>
>

Invasive species distribution models

Pl@ntHealth: automated plant epidemiology




Statistics

More than 8M downloads

Between 60k - 100K users / day

11 languages

17K species (illustrated by 1M revised images)
22 projects & micro-projects

35M raw plant images / 55M users sessions
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12K followers on social networks

In 2018 : 3,352,788 users in 235 countries

Target

> recognize 300K species
» requires richer database and

» more sophisticated models



Pl@ntNet technology

Visual features
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Outline

DL Training: Forward and backward propagations, a computational perspective



DL training phase: computational DAG

DNN: a DAG (googlenet)
Node of the DAG

for instance, fi = RELU(Wx + b)



DL: supervised learning process

Principe

>

>
>
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v

Start with an example (x, y)
Evaluate x using the DAG (as for a classical DAG)
Evaluate the loss at the end

Do the backward propagation of the gradient to evaluate the sensitivity of
loss to input parameters (almost as for a classical DAG)

Update the weights ? speed (and more generally optimization theory
issues) is out of scope



Forward propagation example: f = || Wx]||2
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Forward propagation example: f = || Wx]||2

f=llgllz = 0.116




Backward propagation example f = || Wx]||»

f = llgllz = 0.116

Vif=1




Backward propagation example f = || Wx]||»

f = llgllz = 0.116

Vif=1

> f=aqi+q5— Vef =2q



Backward propagation example f = || Wx]||»
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Distributed DL: forward propagation and backward propagation
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Vwf + update
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DL: forward propagation and backward propagation

Important issues with respect to memory usage
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keep W and update it (depends on the layer type)

2) and keep them until backward propagation

receive x(*) et x!
compute and send y®) et y®

receive V )f and V o f (same size as y@® et y?)
compute and send V ) f and V ) f (same size x!) et x(?))

compute Vw f and update W
the overall DAG is: forward + loss + backward + extra dependencies:
> (x(l), x(2)) needed during the backpropagation
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Where to find parallelism 7



How to find parallelism (1) 7 hyper parameters tuning

» There are many hyper parameters to determine...



How to find parallelism (1) 7 hyper parameters tuning

» There are many hyper parameters to determine... and in many cases no
clear algorithm to do it beyond brute force
» Parallel algorithm
> try several hyper parameters sets



How to find parallelism (1) 7 hyper parameters tuning

» There are many hyper parameters to determine... and in many cases no
clear algorithm to do it beyond brute force
» Parallel algorithm

> try several hyper parameters sets
» choose the most promising ones



How to find parallelism (1) 7 hyper parameters tuning

» There are many hyper parameters to determine... and in many cases no
clear algorithm to do it beyond brute force
» Parallel algorithm

> try several hyper parameters sets
» choose the most promising ones
» possibly reallocate resources



How to find parallelism (1) 7 hyper parameters tuning

» There are many hyper parameters to determine... and in many cases no
clear algorithm to do it beyond brute force
» Parallel algorithm

> try several hyper parameters sets
» choose the most promising ones
» possibly reallocate resources

» Easy way to achieve good parallel scalability

> at least at the beginning, i.e. before hyper parameters are determined.



How to find parallelism (Il) ? data parallelism

» In practice, use of mini-batches

> aggregate several (x,y) pairs
» transform vectors into matrices
» to keep GPUs happy

» In practice, does not affect convergence if mini-batches are small enough.
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How to find parallelism (Il) ? data parallelism

» In practice, use of mini-batches
> aggregate several (x, y) pairs
» transform vectors into matrices
» to keep GPUs happy

» In practice, does not affect convergence if mini-batches are small enough.
» Data parallelism (the one used for PI@ntnet at the moment)

» perform several mini-batches in parallel

»> compute Vy f for each mini-batch in parallel

> sum the different Vy f using MPI_Reduce like algorithm.
» first drawback:

> requires to communicate all Ws
> and is equivalent to use a large mini-batch size
» and thus can generate convergence issues (increase the number of epochs)
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What are the limitations of above approaches in the context of Pl@ntnet ?

» hyper parameter tuning and data parallelism
» enable to increase parallelism
» but do not help to solve memory issues
» since the exact same model has to be stored on each node

» In the context of Pl@ntnet, we need to consider
> larger models (parametrized models)
> larger batch sizes on each GPU
» Potential solutions
1. work more, stock less (the end of this talk)
» optimal checkpointing strategies
» to do extra computations to save memory
2. communicate more, store less (the end of this thesis)
» use model parallelism

P split the model across several nodes
» communicate forward and backward activations between nodes
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Scheduling re-computations to use less memory



Single Adjoint Chain Computation problem

X

Figure: The data dependencies in the AC chain.
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Multiple Adjoint Chain Computation problem

Figure: The data dependencies in the multiple adjoint chain with two branches.

» A much more complicated Dynamic Programming solves above problem

> Generalization to trees, series parallel and DAGs are needed (but will be
hard)



Conclusion

» DL training phase and Parallelism

» Memory issues are crucial for PI@ntNet
» Scalability is not difficult to achieve
» At the moment, we concentrate on the single node case
» We implemented optimal checkpointing strategy for homogeneous chains in
PyTorch

» Can be combined with model parallelism to further save memory
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