

/ Leveraging cloud unused resources for (Big) data application placement while achieving SLA / Jean-Emile DARTOIS, Jalil BOUKHOBZA, Olivier BARAIS

Outline

- > b<>com
- Context and Motivation
- > Problem Statement
- > Objectives / Challenges
 - Challenge 1: Modelling I/O interference on SSD for Containers in a Cloud
 - Challenge 2: Using Quantile Regression for resource estimation
 - Challenge 3: MapReduce data placement on ephemeral Cloud resources

b<>com

b com

- b<>com is a private
 French innovation center
 designed to boost
 innovation in digital
 technologies.
- A unique co-investment model that provides knowledge, know-how and technology.

b<>com

- **7000** m² scientific campus
- people (25 PhD students) 250
- 14 nationalities
- shareholders 35

- 200 papers & reports

10

66

4

- european projects
- transferred technologies
- sites (3 in Western France, 1 in Paris)

- Past project: Watcher https://wiki.openstack.org/wiki/Watcher
 - Flexible and scalable **resource optimization framework**
 - Provide a pluggable architecture for **optimization algorithms**

- Current project: Falcon
 - Most data-centers have a low resource usage (20% in case of CPU [M. Carvalho and al, 2014])
 - Allow organizations to resell their computing infrastructure unused resources

Context

Context

Memory

Problem Statement

How to decide/determine how much resource to sell? How to guarantee SLA?

Challenges

(1) Estimating the maximum performance reachable by the system to

determine the real system capacity

(2) Estimating **future unused resources**

(3) Designing strategies to deploy applications on top of unused resources

Challenge #1 :

Investigating Machine Learning Algorithms for Modeling I/O Interference on SSD for Container-based Virtualization

Background - SSD I/O interference

- 5x to 11x performance drop (far below values reported on datasheets)
- > Performance is oscillating among three states according to the sustained I/O traffic

Problem Statement

- > We define three types of I/O interference on a given application I/O workload:
 - Interference due to SSD **internal mechanisms** (e.g. GC, wear leveling)
 - Interference due to kernel I/O software stack (e.g. page cache read-ahead and I/O scheduling)
 - Interference due to **co-hosted applications workloads**

How to manage, prevent and solve I/O interference to guarantee SLA?

Our Contribution

- A methodology to build predictive models for SSD I/O performance to solve I/O interference issues in container based clouds.
- To **explore** different **machine learning algorithms** for modeling I/O interference

• Often the hardest part of solving a machine learning problem is to **find the right algorithm** and the right **features /hyparameters.**

Overall Approach

Name	Category	Description
web	Server application	N-tiers web application
email	Server application	Email server
fileserver	Server application	File server
video	Multimedia processing	H.264 video transcoding
freqmine	Data mining	Frequent itemset mining
compile	Software development	Linux kernel compilation
micro-benchmark	Synthetic Benchmark	I/O workload generator

(a) Samsung Evo 850 (SATA) DT GBDT RF MARS AdaBoost (b) Intel 750 (NVMe) 2.5 2.0 NRWSE DT MARS AdaBoost GBDT RF (c) Samsung 960 Pro (NVMe) NRMSE [%] 2 4 3 2 5 DT MARS AdaBoost GBDT RF (d) Samsung 960 Evo (NVMe) 3.0 NRMSE [%] 2.5 2.0 1.5 DT AdaBoost MARS GBDT RF

Evaluation

- GDBT, AdaBoost and RF gave the best with an NRMSE of 2.5%
- The ranking of the tested algorithms was the same regardless of the SSD used.
- Adaboost, GDBT and RF provided the smallest dispersion proving there robustness to a changing I/O.
- We used fixed hyperparameters to tune RF and DT. This makes them simpler to use

Challenge 1- Conclusion

- Predicting I/O performance in container-based virtualization is necessary to guarantee SLO
- Machine learning is a relevant approach to predict SSD I/O performance in a container-based virtualization
- We advise to use Random Forest.
- We will use our approach to develop a strategy to improve container placement in cloud infrastructure in order to avoid performance issues before users are impacted.

Challenge #2:

Using Quantile Regression for Reclaiming Unused Cloud Resources while achieving SLA [IEEE CloudCom,2018]

Introduction

• Estimate Future Demand to provide SLA guarantees

Machine learning could be used to estimate future unused resources

 Vision: Quantile regression could provide a flexible trade-off between the potential amount of resources to reclaim and the risk of SLA violations

Background - Quantile Regression

The **direct** approach consists in minimizing a sum of asymmetrically weighted absolute residuals based on:

$$q_{\tau}(x) = \arg\min_{\mu(x)} \mathbb{E} \left(\rho_{\tau}(Y - \mu(x)) | X = x \right)$$
$$\rho_{\tau}(u) = \begin{cases} \tau u & u \ge 0\\ (\tau - 1)u & u < 0 \end{cases}$$

The **indirect** approach is performed in two steps, the first one estimates the conditional CDF. Then, the τ th conditional quantile of Y given X = x is obtained via inversion of the estimated conditional CDF [23] based on:

$$q_\tau(x) = F^{-1}(\tau|x)$$

Potential cost savings

- All learning algorithms:
 - Increase potential cost savings with the increase of τ
 - Increase up to 20% cost savings compared to median-estimation based approach (T=0.5)
- When T > 0.9 the reduction of unused resources is higher than the decrease of SLA violations

- Flexibility: Regression Quantile is useful to maximize cost savings (up to 20% compared to traditional approaches) for the 4 datasets
- **Exhaustivity**: Only CPU leads to no savings
- Robustness: RF is the most robust algorithm but LSTM performs better with potential cost savings (Underestimation is not penalized)
- **Applicability**: GBDT smallest overhead and LSTM had the highest overheads.

Challenge #3 :

Cuckoo: Opportunistic MapReduce on Ephemeral and Heterogeneous Cloud Resources (On-going)

Introduction

• **Big data** in cloud computing is a growing trend [El-seoud, 2017]

• *Big data processing* demand a considerable amounts of cloud resources and are **costly** [Montero C, 2014]

Opportunity to reduce costs by processing big data on top of United and the second seco

Background - Hadoop

source:http://a4academics.com/tutorials/83-hadoop/840-map-reduce-architecture

Problem Statement

- Cloud Heterogeneity
 - processing capabilites

Resources Volatility

 overestimation or underestimate of the future unused resources may lead to performance degration (e.g., remote or speculative tasks)

Resources Isolation

- reclaimed resources must be released or evicted in case of starvation whenever farmers require them again
- How to minimize the number of recomputations? How to avoid any interference on farmer workloads?

Our Contribution

- **Data Placement Strategy** based on weighted-Round-Robin algorithm:
 - \circ Processing capacities \rightarrow heterogeneity
 - Estimating Future unused resources \rightarrow volatility
- A QoS Controller to deal with underestimation or overestimation of the available unused resources → isolation
 - Keeping a portion of CPU and memory unused to prevent interference
 - Adjusting dynamically containers resource limits

Overall approach

Evaluation (preliminary)

- Increase the ephemeral container lifetimes up to median ~900 minutes with a safety margin of 30% but at a cost of less resources
- Cuckoo outperforms Hadoop by up to 4.4x

THANKS/MERCI

Any questions ?