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Context

How is 1/0O performance often evaluated?

[ Storage system X
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Context

How is 1/0O performance often evaluated?

[ Storage system X]( ‘

= Communication through high-level interfaces (REST, API, ...)

Test eng.
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Context

How is 1/0O performance often evaluated?

[ Storage system X]( ‘

T =4

= Workload execution phase
= Configuration determines which nodes to use
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Context

How is 1/0O performance often evaluated?

[ Storage system x €
‘ 14
¢ Test eng.

= High-level metrics (e.g., overall I/O throughput, exec. time, ...)
= Results: aggregated and reported by the storage system
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Context

How is 1/0O performance often evaluated?

[ Storage system x €

J

—
¢ Test eng.

= Lack of 1/O analysis tools (measurements # understanding)

= Potential /0O errors in lower layers are ignored

= Nothing is known about workloads' data access
— Pattern-related errors?
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Goal

= Analyzing 1/O patterns! of storage workloads

Requirements

= Flexible and simple as high-level evaluations
= straightforward results

= Work in production environments

— Negligible overhead
— Verified behaviours in lower layers

1. We define |/O access pattern of a given workload as the sequences of the /O requests issued by the target |/O process
during a given workload to access on-disk data files
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Context

Tracing in the 1/0 evaluation context
I0scope! design & validation
Experiments on MongoDB & Cassandra

Conclusions

! https://github.com/LeUnAiDeS/I0scope (reproducible scenarios provided)
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Tracing in the |/O evaluation context

= Generic tracing — no filtering mechanism([1]

— Heavy tracing output
— Post-analysis effort is not negligible

[1] Betke, E. et al. Real-time i/o-monitoring of hpc applications with siox, elasticsearch, grafana and fuse.High Performance Computing. (2017)
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Tracing in the |/O evaluation context

= Generic tracing — no filtering mechanism([1]

— Heavy tracing output
— Post-analysis effort is not negligible

= Support partial storage media[2]
— Works only with HDDs

[2] Daoud, H., Dagenais, M.R. : Recovering disk storage metrics from low-level trace events. Software : Practice and Experience 48(5), (2018)
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= Generic tracing — no filtering mechanism([1]

— Heavy tracing output
— Post-analysis effort is not negligible

= Support partial storage media[2]
— Works only with HDDs

= Partial coverage of filesystems[3]

[3] Jeong, S. et al. : Androstep : Android storage performance analysis tool. In : Software Engineering (Workshops). vol. 13, pp. 327-340 (2013)
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Tracing in the |/O evaluation context

= Generic tracing — no filtering mechanism([1]

— Heavy tracing output
— Post-analysis effort is not negligible

= Support partial storage media[2]
— Works only with HDDs

= Partial coverage of filesystems[3]
= Modified kernel is required|3]

[3] Jeong, S. et al. : Androstep : Android storage performance analysis tool. In : Software Engineering (Workshops). vol. 13, pp. 327-340 (2013)
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Tracing in the |/O evaluation context

= Generic tracing — no filtering mechanism([1]
— Heavy tracing output
— Post-analysis effort is not negligible

= Support partial storage media[2]
— Works only with HDDs

= Partial coverage of filesystems[3]
= Modified kernel is required|3]

= Many tracing frameworks for |/O extrapolation[4,5,6,7,8]
— Different scope — traces are more important than workloads!

[4] Luo, X et al. : Hpc i/o trace extrapolation. In : Proceedings of the 4th Workshop on Extreme Scale Programming Tools. (2015)

[5] Luo, X et al. : Scalaioextrap : Elastic i/o tracing and extrapolation. In : Parallel and Distributed Processing Symposium (IPDPS), (2017)

[6] Chahal, D et al. : Performance extrapolation of io intensive workloads : Work in progress. 7th International Conf. on Perf. Eng. (2016)

[7] Virk, R et al. : Trace replay based i/o performance studies for enterprise workload migration. In : 2nd Annual Conference of CMG India. (2015)
[8] Tak, B et al. : Pseudoapp : Performance prediction for application migration to cloud. In : Integrated Network Management (IM 2013)
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Tracing in the |/O evaluation context

= Generic tracing — no filtering mechanism([1]

— Heavy tracing output
— Post-analysis effort is not negligible

= Support partial storage media[2]
— Works only with HDDs
= Partial coverage of filesystems|[3]
= Modified kernel is required|3]
= Many tracing frameworks for |/O extrapolation[4,5,6,7,8]
— Different scope — traces are more important than workloads!
= Tools like DTrace, SystemTap, LT Tng use dynamic loading
— Usage suitability is affected (e.g., signed kernels, no compilation tools)
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Tracing in the |/O evaluation context

= Generic tracing — no filtering mechanism([1]

— Heavy tracing output
— Post-analysis effort is not negligible

= Support partial storage media[2]
— Works only with HDDs
= Partial coverage of filesystems|[3]
= Modified kernel is required|3]
= Many tracing frameworks for |/O extrapolation[4,5,6,7,8]
— Different scope — traces are more important than workloads!
= Tools like DTrace, SystemTap, LT Tng use dynamic loading
— Usage suitability is affected (e.g., signed kernels, no compilation tools)
= Partial coverage of /O methods such as mmap|[9,10,11]

[9] Mantri, S.G. : Efficient In-Depth 10 Tracing and its application for optimizing systems. Virginia Tech (2014)
[10] IOVISOR BCC Project’s slower tools (fileslower, extaslower).
[11] IOVISOR BCC Project’s I0snoop tools.
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IOscope design & validation

I0scope is based on eBPF. What is eBPF?

= A recent tracing and filtering technology

= Connect to all data sources: (Kprobes, Uprobes, tracepoints, ...)
= Almost near-zero overhead (4 ns per syscall)?

= Formally adopted by the Linux kernel (> Linux 3.19)

= Has a lot of front-end projects like IOVISOR’s BCC
— No more byte code!
— Towards precise-objective tracing

Userspace Processes

Userspace

Kernel space
BPF-maps

_encapulated data

Verifier

BPF VM

BPF syscall

eBPF's basic components

2. Starovoitov, A. : https ://lwn.net/Articles/598545/ (2014)
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IOscope design & validation

I0scope tracer: uncovering 1/O patterns for storage workloads

= filtering-based tracing mechanism 3
— Reduce the collected data by an order of magnitude
— Less interceptions = lower overhead (/eq 0.08%)
— Tiny tracing granularities (e.g. R/W operations)
= Two tools for:
— 1/0 workloads issued using syscalls
— memory mapped-files workloads
= Collect specific data {file offsets, size, latency, timestamps, op.Mode}
= Useful for in-production usage

5| User space Pi virtual memory
3 Variations of I10scope toolkit Read or write
3 [CICED . .lhnﬁ,:'&"'lf-.;.. Oscop ! Ri[R2 [ [ Ro )[Otherdua)
=| Kernel space - ased | [ {Oscope 10scope 7 ~ < SRS <
£ VS read | Filtering base , 2, | N
° . classic mmap ! 2,
4 A
3 Filesystem Sy
3 - X
g Block device y 2
] It b
% 1/O Scheduler Get data "t :
Device manager Disk file (inode)
Physical storage
10scope overall design
3. Several filters are applied in both kernel and userspace pair during collecting traces (pid, files, I/O operations, ...)
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IOscope design & validation

I0scope validation

= Linux kernel 4.9.0
= Flexible Input/Output (FIO) benchmark is used
— Generate diverse workloads / several |/O

methods
E.g. rand reading workload for mmap :
fio —name=testfile -rw=randread
-ioengine=mmap -direct=0 -size=10G
—numj obs=1 —group_report 1ng How IOscope catches I/O traces

FIO Benchmark

@generate
& run a selected

— workload Target file(s)
Tnode(s)

[IOscz)pe,classic ‘ 10scope_mmap ]

TABLE — Validated 1/O access modes and workloads

Tested workloads : read, write, randread,

Fio 10engine Target syscalls randwrite, readwrite, and randreadwrite
Sync read, write all
Psync pread, pwrite all
Pvsync preadv, pwritev all
Pvsync2 preadv2, pwritev2 all
posixaio aio_read, aio_ write all
Mmap mmap, memcpy all
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IOscope design & validation

I0scope validation

= Linux kernel 4.9.0

= Flexible Input/Output (FIO) benchmark is used
— Generate diverse workloads / several |/O
methods
E.g. rand reading workload for mmap :
fio -name=testfile -rw=randread [IoSa‘)pe o ‘ TR Sy—— ]
-ioengine=mmap -direct=0 -size=10G - —
-numjobs=1 -group_reporting

Some results of validated workloads:

FIO Benchmark

@generate
& run a selected

— workload Target file(s)
Tnode(s)

How |0scope catches |/O traces

Read O req. - Wite IO reg

”) )
g 1 & ég + mmap mem. faults
E51 3 §2]
a4 2 81 2 |
3° $ < S
5 - 57 EE
2 g4 25 2 S
[l (RS 3
31 &4 it S oA
> v v v T
w0 2000 4000 6000 g 2000 4000 6000 0 20 40 60 80 100

Sequences of I/O requests Sequences of I/O requests Sequences of memory faults

rw workload - Poxisaio |0engine randrw workload - Psync I0engine

r workload - mmap |Oengine
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Experimentation

Objective: Uncovering potential pattern-related issues

Experimental setup

= MongoDB & Cassandra are tested

— MongoDB v3.4 with WiredTiger (classic 1/0)
— Cassandra v3.0.14 (mmap 1/0)

= One client to index a simple int field

= Single server & two-shards cluster configurations

= Hash sharding for clustered configuration — load balancing
= Experiments run on HDDs & SSDs separately

= Cache is cleaned between experiments

= Data contiguity is tested using FIBMAP

Datasets

= Two equally-sized datasets (same characteristics)

(min, avrg, max) in KB | N. of data units | Size (Gb)
(1, 3.47, 6) 20,000,000 docs | 71

= Elements x (int, date, 2 x str[min, max], array[1..4] x string[min, max])
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Experimentation - Cassandra results

Single-server Cassandra Distributed Cassandra
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Experimentation - Cassandra results

Standalone Cassandra (3rd SSTable 35GB)

Page fault offsets (byte)
0e+00 2e+06 4e+068 6e+06 B8e+06

150000 250000
Memory faults

0 50000

1/O pattern of single-server experiment (HDD)

— Clustered experiments also have pure sequential access pattern

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope



Experimentation - MongoDB results
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Experimentation - MongoDB results
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Experimentation - MongoDB results

Standalone MongoDB Standalone MongoDB

6e+10
6e+10

File offsets (byte)
4e+10

File offsets (byte)
4e+10

2 2
T T
$ &
& &
3 3
8 8
K Ky
S 0 500000 1500000 2500000 S 0 500000 1500000 2500000
/0 requests 1/O requests

Single-server I/O patterns: HDD (left) and SSD (right)

rforming Low-Level |/O Evaluations for Discovering Potential 1/O Issues using |Oscope




Experimentation - MongoDB results

Standalone MongoDB Standalone MongoDB Distributed MongoDB (shard1/2) Distributed MongoDB (shard2/2)
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= Acceptable access pattern on
single-server experiments

File offsets (byte)

00400 1e+10 2e+10 3e+10 4e+10
File offsets (byte)

00400 1e+10 2e+10 3e+10 4e+10

= Seq. access — Random access
on shards!

= Data distribution issue

= SSDs are affected by 1/0
patterns too!

0 400000 800000 1200000 0 500000 1000000 1500000
/0 requests 1/0 requests

SSD — first clustered experiment
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Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

Gd1| d2 | id3| s

_id 7|_id 8 |_id 10|_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)

_id1 _id 3 _id7 _id5 | id8 _id 10 _id 2 _id19 |_id 11 _id 20 _id 30 _id 27

rec 1 rec 2 rec 3 rec(n-1) rec (n)

FIGURE — MongoDB scanning table Vs records’ order on the disk
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Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

Cd1| id2| id3]_id5 1) Get this doc
2) Which doc is next?

_id 7|_id 8 |_id 10|_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)
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FIGURE — MongoDB scanning table Vs records’ order on the disk
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We proposed an ad-hoc solution
= Key-idea: rewrite shards data

= MongoDB updates its view of data
= High cost, but gives insights!
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Conclusion

Conclusions

= Low-level I/O evaluations are not negligable to preserve 1/O
performance

= Systems’ complexity may hide issues

— We showed how an unexpected issue affects the performance of
MongoDB

= |Oscope is proposed to analyse |/O patterns of storage systems

= We demonstrated how it is worthy to use 1Oscope to go beyond
high-level evaluations’ results

Future work

= Extend 10scope to uncover other |/O-related issues

= Performing more performance evaluations on other storage systems
= Further investigation on SSDs and |/O patterns
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Questions are welcome!
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