
Performing Low-Level I/O Evaluations for Discovering Potential I/O
Issues using IOscope

Abdulqawi Saif1,2

abdulqawi.saif@loria.fr
Lucas Nussbaum1

lucas.nussbaum@loria.fr

Ye-Qiong Song1

ye-qiong.song@loria.fr

1Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
2Qwant Enterprise, F-88000 Épinal, France

January 25, 2019
Per3S 2019 – Performance and Scalability of Storage Systems

Bordeaux, France

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 1 / 15

mailto:abdulqawi.saif@loria.fr
mailto:lucas.nussbaum@loria.fr
mailto:ye-qiong.song@loria.fr

Context

How is I/O performance often evaluated?

Storage system X

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 2 / 15

Context

How is I/O performance often evaluated?

Storage system X

Test eng.

⇒ Communication through high-level interfaces (REST, API, . . .)

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 2 / 15

Context

How is I/O performance often evaluated?

Storage system X

Test eng.

⇒ Workload execution phase
⇒ Configuration determines which nodes to use

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 2 / 15

Context

How is I/O performance often evaluated?

Storage system X

Test eng.

⇒ High-level metrics (e.g., overall I/O throughput, exec. time, . . .)
⇒ Results: aggregated and reported by the storage system

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 2 / 15

Context

How is I/O performance often evaluated?

Storage system X

Test eng.

⇒ Lack of I/O analysis tools (measurements 6= understanding)
⇒ Potential I/O errors in lower layers are ignored
⇒ Nothing is known about workloads’ data access
→ Pattern-related errors?

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 2 / 15

Context

Goal
⇒ Analyzing I/O patterns 1 of storage workloads

Requirements
⇒ Flexible and simple as high-level evaluations
⇒ straightforward results
⇒ Work in production environments
→ Negligible overhead
→ Verified behaviours in lower layers

1. We define I/O access pattern of a given workload as the sequences of the I/O requests issued by the target I/O process
during a given workload to access on-disk data files

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 3 / 15

Outline

Context

Tracing in the I/O evaluation context

IOscope1 design & validation

Experiments on MongoDB & Cassandra

Conclusions

1 https://github.com/LeUnAiDeS/IOscope (reproducible scenarios provided)

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 4 / 15

https://github.com/LeUnAiDeS/IOscope

Tracing in the I/O evaluation context

⇒ Generic tracing – no filtering mechanism[1]
→ Heavy tracing output
→ Post-analysis effort is not negligible

⇒ Support partial storage media[2]
→ Works only with HDDs

⇒ Partial coverage of filesystems[3]
⇒ Modified kernel is required[3]
⇒ Many tracing frameworks for I/O extrapolation[4,5,6,7,8]
→ Different scope – traces are more important than workloads!

⇒ Tools like DTrace, SystemTap, LTTng use dynamic loading
→ Usage suitability is affected (e.g., signed kernels, no compilation tools)

⇒ Partial coverage of I/O methods such as mmap[9,10,11]

[1] Betke, E. et al. Real-time i/o-monitoring of hpc applications with siox, elasticsearch, grafana and fuse.High Performance Computing. (2017)

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 5 / 15

Tracing in the I/O evaluation context

⇒ Generic tracing – no filtering mechanism[1]
→ Heavy tracing output
→ Post-analysis effort is not negligible

⇒ Support partial storage media[2]
→ Works only with HDDs

⇒ Partial coverage of filesystems[3]
⇒ Modified kernel is required[3]
⇒ Many tracing frameworks for I/O extrapolation[4,5,6,7,8]
→ Different scope – traces are more important than workloads!

⇒ Tools like DTrace, SystemTap, LTTng use dynamic loading
→ Usage suitability is affected (e.g., signed kernels, no compilation tools)

⇒ Partial coverage of I/O methods such as mmap[9,10,11]

[2] Daoud, H., Dagenais, M.R. : Recovering disk storage metrics from low-level trace events. Software : Practice and Experience 48(5), (2018)

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 5 / 15

Tracing in the I/O evaluation context

⇒ Generic tracing – no filtering mechanism[1]
→ Heavy tracing output
→ Post-analysis effort is not negligible

⇒ Support partial storage media[2]
→ Works only with HDDs

⇒ Partial coverage of filesystems[3]

⇒ Modified kernel is required[3]
⇒ Many tracing frameworks for I/O extrapolation[4,5,6,7,8]
→ Different scope – traces are more important than workloads!

⇒ Tools like DTrace, SystemTap, LTTng use dynamic loading
→ Usage suitability is affected (e.g., signed kernels, no compilation tools)

⇒ Partial coverage of I/O methods such as mmap[9,10,11]

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 5 / 15

Tracing in the I/O evaluation context

⇒ Generic tracing – no filtering mechanism[1]
→ Heavy tracing output
→ Post-analysis effort is not negligible

⇒ Support partial storage media[2]
→ Works only with HDDs

⇒ Partial coverage of filesystems[3]

⇒ Modified kernel is required[3]
⇒ Many tracing frameworks for I/O extrapolation[4,5,6,7,8]
→ Different scope – traces are more important than workloads!

⇒ Tools like DTrace, SystemTap, LTTng use dynamic loading
→ Usage suitability is affected (e.g., signed kernels, no compilation tools)

⇒ Partial coverage of I/O methods such as mmap[9,10,11]

[3] Jeong, S. et al. : Androstep : Android storage performance analysis tool. In : Software Engineering (Workshops). vol. 13, pp. 327–340 (2013)

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 5 / 15

Tracing in the I/O evaluation context

⇒ Generic tracing – no filtering mechanism[1]
→ Heavy tracing output
→ Post-analysis effort is not negligible

⇒ Support partial storage media[2]
→ Works only with HDDs

⇒ Partial coverage of filesystems[3]
⇒ Modified kernel is required[3]

⇒ Many tracing frameworks for I/O extrapolation[4,5,6,7,8]
→ Different scope – traces are more important than workloads!

⇒ Tools like DTrace, SystemTap, LTTng use dynamic loading
→ Usage suitability is affected (e.g., signed kernels, no compilation tools)

⇒ Partial coverage of I/O methods such as mmap[9,10,11]

[3] Jeong, S. et al. : Androstep : Android storage performance analysis tool. In : Software Engineering (Workshops). vol. 13, pp. 327–340 (2013)

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 5 / 15

Tracing in the I/O evaluation context

⇒ Generic tracing – no filtering mechanism[1]
→ Heavy tracing output
→ Post-analysis effort is not negligible

⇒ Support partial storage media[2]
→ Works only with HDDs

⇒ Partial coverage of filesystems[3]
⇒ Modified kernel is required[3]
⇒ Many tracing frameworks for I/O extrapolation[4,5,6,7,8]
→ Different scope – traces are more important than workloads!

⇒ Tools like DTrace, SystemTap, LTTng use dynamic loading
→ Usage suitability is affected (e.g., signed kernels, no compilation tools)

⇒ Partial coverage of I/O methods such as mmap[9,10,11]

[4] Luo, X et al. : Hpc i/o trace extrapolation. In : Proceedings of the 4th Workshop on Extreme Scale Programming Tools. (2015)
[5] Luo, X et al. : Scalaioextrap : Elastic i/o tracing and extrapolation. In : Parallel and Distributed Processing Symposium (IPDPS), (2017)
[6] Chahal, D et al. : Performance extrapolation of io intensive workloads : Work in progress. 7th International Conf. on Perf. Eng. (2016)
[7] Virk, R et al. : Trace replay based i/o performance studies for enterprise workload migration. In : 2nd Annual Conference of CMG India. (2015)
[8] Tak, B et al. : Pseudoapp : Performance prediction for application migration to cloud. In : Integrated Network Management (IM 2013)

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 5 / 15

Tracing in the I/O evaluation context

⇒ Generic tracing – no filtering mechanism[1]
→ Heavy tracing output
→ Post-analysis effort is not negligible

⇒ Support partial storage media[2]
→ Works only with HDDs

⇒ Partial coverage of filesystems[3]
⇒ Modified kernel is required[3]
⇒ Many tracing frameworks for I/O extrapolation[4,5,6,7,8]
→ Different scope – traces are more important than workloads!

⇒ Tools like DTrace, SystemTap, LTTng use dynamic loading
→ Usage suitability is affected (e.g., signed kernels, no compilation tools)

⇒ Partial coverage of I/O methods such as mmap[9,10,11]

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 5 / 15

Tracing in the I/O evaluation context

⇒ Generic tracing – no filtering mechanism[1]
→ Heavy tracing output
→ Post-analysis effort is not negligible

⇒ Support partial storage media[2]
→ Works only with HDDs

⇒ Partial coverage of filesystems[3]
⇒ Modified kernel is required[3]
⇒ Many tracing frameworks for I/O extrapolation[4,5,6,7,8]
→ Different scope – traces are more important than workloads!

⇒ Tools like DTrace, SystemTap, LTTng use dynamic loading
→ Usage suitability is affected (e.g., signed kernels, no compilation tools)

⇒ Partial coverage of I/O methods such as mmap[9,10,11]
[9] Mantri, S.G. : Efficient In-Depth IO Tracing and its application for optimizing systems. Virginia Tech (2014)
[10] IOVISOR BCC Project’s slower tools (fileslower, ext4slower).
[11] IOVISOR BCC Project’s IOsnoop tools.

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 5 / 15

IOscope design & validation

IOscope is based on eBPF. What is eBPF?
⇒ A recent tracing and filtering technology
⇒ Connect to all data sources: (Kprobes, Uprobes, tracepoints, . . .)
⇒ Almost near-zero overhead (4 ns per syscall) 2
⇒ Formally adopted by the Linux kernel (≥ Linux 3.19)
⇒ Has a lot of front-end projects like IOVISOR’s BCC
→ No more byte code!
→ Towards precise-objective tracing

Userspace Processes

i j ... n Userspace

Kernel space

BPF VM

VerifierB
P

F
 s

ys
ca

ll

BPF-maps
encapulated data

eBPF’s basic components

2. Starovoitov, A. : https ://lwn.net/Articles/598545/ (2014)
Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 6 / 15

IOscope design & validation
IOscope tracer: uncovering I/O patterns for storage workloads
⇒ filtering-based tracing mechanism 3

→ Reduce the collected data by an order of magnitude
→ Less interceptions = lower overhead (leq 0.08%)
→ Tiny tracing granularities (e.g. R/W operations)

⇒ Two tools for:
→ I/O workloads issued using syscalls
→ memory mapped-files workloads

⇒ Collect specific data {file offsets, size, latency, timestamps, op.Mode}
⇒ Useful for in-production usage

A
bs

tr
ac

te
d

I/
O

 P
at

h
in

 L
in

ux User space

VFS_write
VFS_read

Pi Pj ... Pn

Kernel space

I/O Scheduler
Device manager

Physical storage

syscalls

Variations of
read & write

IOscope toolkit Pi
Pi virtual memory

Other data

Disk file (inode)

R1 R2 ... Rn
Read or write
some data

VFS

IOscope
classic

IOscope
mmap

Filtering-based profiling
filemap_fault func.

Filtering based

profiling

m
apped region

Get data

Block device
Filesystem

IOscope overall design

3. Several filters are applied in both kernel and userspace pair during collecting traces (pid, files, I/O operations, . . .)
Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 7 / 15

IOscope design & validation

IOscope validation

⇒ Linux kernel 4.9.0
⇒ Flexible Input/Output (FIO) benchmark is used
→ Generate diverse workloads / several I/O

methods
E.g. rand reading workload for mmap :
fio –name=testfile –rw=randread
–ioengine=mmap –direct=0 –size=10G
–numjobs=1 –group_reporting

FIO Benchmark

pid

IOscope_classic

Target file(s)

generate
& run a selected
workload

inode(s)

IOscope_mmap

2

1

How IOscope catches I/O traces

Table – Validated I/O access modes and workloads

Fio IOengine Target syscalls Tested workloads : read, write, randread,
randwrite, readwrite, and randreadwrite

Sync read, write all
Psync pread, pwrite all
Pvsync preadv, pwritev all
Pvsync2 preadv2, pwritev2 all
posixaio aio_read, aio_write all
Mmap mmap, memcpy all

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 8 / 15

IOscope design & validation

IOscope validation

⇒ Linux kernel 4.9.0
⇒ Flexible Input/Output (FIO) benchmark is used
→ Generate diverse workloads / several I/O

methods
E.g. rand reading workload for mmap :
fio –name=testfile –rw=randread
–ioengine=mmap –direct=0 –size=10G
–numjobs=1 –group_reporting

FIO Benchmark

pid

IOscope_classic

Target file(s)

generate
& run a selected
workload

inode(s)

IOscope_mmap

2

1

How IOscope catches I/O traces

Some results of validated workloads:

●●
●●●

●●
●●

●●
●●

●●●
●●

●●
●●

●●
●●●

●●
●●

●●
●●●

●●
●●

●●
●●

●●●
●●

●●
●●

●●
●●●

●●
●●

●●
●●

●●●
●●

●●
●●

●●●
●●

●●
●●

●●
●●●

●●
●●

●●
●●

●●●
●●

●●
●●

●●
●●●

●●
●●

●●
●●●

●●
●●

●●
●●

●●●
●●

●●
●●

●●
●●●

●●
●●

●●
●●

●●●
●●

●●
●●

●●●
●●

●●
●●

●●
●●●

●●
●●

●●
●●

●●

0 2000 4000 60005.
0e

+
06

2.
0e

+
07

Sequences of I/O requests

F
ile

 o
ffs

et
s

(b
yt

e)

● ●Read IO req. Write IO req.

rw workload - Poxisaio IOengine

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●●●●

●●●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●●

●
●

●

●

●

●

●

●●

●
●

●●●

●●●

●●

●

●

●

●

●●●●

●

●

●

●

●●●
●●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●
●
●

●●

●

●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●●●●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●
●
●

●

●

●

●

●●

●●

●

●●●
●
●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●

●●●●

●

●

●●

●●

●

●

●

●

●

●

●

●●●
●●●●●●●●●
●
●●●●●●●
●●

0 2000 4000 60000.
0e

+
00

2.
0e

+
07

Sequences of I/O requests

F
ile

 o
ffs

et
s

(b
yt

e)

● ●Read IO req. Write IO req.

randrw workload - Psync IOengine

●●

0 20 40 60 80 100

0
20

00
60

00

Sequences of memory faults

P
ag

e
fa

ul
t o

ffs
et

s
(b

yt
e)

● mmap mem. faults

r workload - mmap IOengine
Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 8 / 15

Experimentation
Objective: Uncovering potential pattern-related issues

Experimental setup
⇒ MongoDB & Cassandra are tested
→ MongoDB v3.4 with WiredTiger (classic I/O)
→ Cassandra v3.0.14 (mmap I/O)

⇒ One client to index a simple int field
⇒ Single server & two-shards cluster configurations
⇒ Hash sharding for clustered configuration – load balancing
⇒ Experiments run on HDDs & SSDs separately
⇒ Cache is cleaned between experiments
⇒ Data contiguity is tested using FIBMAP
Datasets
⇒ Two equally-sized datasets (same characteristics)

(min, avrg, max) in KB N. of data units Size (Gb)
(1, 3.47, 6) 20,000,000 docs 71

⇒ Elements x (int, date, 2 x str[min, max], array[1..4] x string[min, max])
Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 9 / 15

Experimentation - Cassandra results

0 200 400 600 800 1000

0
2
0

4
0

6
0

8
0

Single−server Cassandra

Execution time (secs)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Read

Write

I/O throughput of a single server experiment(HDD)

0 200 400 600

0
1
0

2
0

3
0

4
0

5
0

6
0

Distributed Cassandra

Execution time (secs)
T

h
ro

u
g
h
p
u
t
(M

B
/s

)

Shard1 (51.8% of data)

shard2 (48.2 % of data)

I/O throughput of Cassandra’s two-nodes cluster (HDD)

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 10 / 15

Experimentation - Cassandra results

I/O pattern of single-server experiment (HDD)

→ Clustered experiments also have pure sequential access pattern

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 10 / 15

Experimentation - MongoDB results

0 500 1000 1500

0
2

0
4

0
6

0
8

0

Execution time (sec)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Read

Write

Single-server experiment – HDD

0 50 100 150 200 250

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

Execution time (sec)
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

Read

Write

Single-server experiment – SSD

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 11 / 15

Experimentation - MongoDB results

0 500 1000 1500

0
2

0
4

0
6

0
8

0

SingleȂserver

Execution time (sec)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Read

Write

0 200 400 600 800 1200

0
2

0
4

0
6

0
8

0

Distributed MongoDB

Execution time (secs)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Shard1 (50.27% of data)

shard2 (49.72% of data)

0 500 1000 2000 3000

0
2

0
4

0
6

0
8

0
1

0
0

Distributed MongoDB

Execution time (secs)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Shard1 (51% of data)

shard2 (49% of data)

Zero gain!

Doubling

the time!

Figure – Results on HDD. Single-server & two different runs of distributed experiments

0 50 100 150 200 250

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

SingleȂserver

Execution time (sec)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Read

Write

0 50 100 150 200

0
5

0
1

0
0

2
0

0
3

0
0

Distributed MongoDB

Execution time (secs)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Shard1 (46.16% of data)

shard2 (53.83% of data)

0 20 40 60 80
0

2
0

0
4

0
0

6
0

0

Distributed MongoDB

Execution time (secs)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)
Shard1 (46.16% of data)

shard2 (53.83% of data)

Figure – Results on SSD. Single-server & two different runs of distributed experiments
Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 12 / 15

Experimentation - MongoDB results

Single-server I/O patterns: HDD (left) and SSD (right)

HDD – second clustered experiment

⇒ Max overhead is less than 0.80%
⇒ Acceptable access pattern on

single-server experiments
⇒ Seq. access → Random access

on shards!
⇒ Data distribution issue
⇒ SSDs are affected by I/O

patterns too!
SSD – first clustered experiment

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 13 / 15

Experimentation - MongoDB results

Single-server I/O patterns: HDD (left) and SSD (right) HDD – second clustered experiment

⇒ Max overhead is less than 0.80%
⇒ Acceptable access pattern on

single-server experiments
⇒ Seq. access → Random access

on shards!
⇒ Data distribution issue
⇒ SSDs are affected by I/O

patterns too!
SSD – first clustered experiment

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 13 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solutionPerforming Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15

Conclusion

Conclusions
⇒ Low-level I/O evaluations are not negligable to preserve I/O

performance
⇒ Systems’ complexity may hide issues
→ We showed how an unexpected issue affects the performance of

MongoDB
⇒ IOscope is proposed to analyse I/O patterns of storage systems
⇒ We demonstrated how it is worthy to use IOscope to go beyond

high-level evaluations’ results
Future work
⇒ Extend IOscope to uncover other I/O-related issues
⇒ Performing more performance evaluations on other storage systems
⇒ Further investigation on SSDs and I/O patterns

Questions are welcome !

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 15 / 15

Conclusion

Conclusions
⇒ Low-level I/O evaluations are not negligable to preserve I/O

performance
⇒ Systems’ complexity may hide issues
→ We showed how an unexpected issue affects the performance of

MongoDB
⇒ IOscope is proposed to analyse I/O patterns of storage systems
⇒ We demonstrated how it is worthy to use IOscope to go beyond

high-level evaluations’ results
Future work
⇒ Extend IOscope to uncover other I/O-related issues
⇒ Performing more performance evaluations on other storage systems
⇒ Further investigation on SSDs and I/O patterns

Questions are welcome !
Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 15 / 15

