Performing Low-Level |/O Evaluations for Discovering Potential |/O

Issues using IOscope

Abdulqawi Saif!:2 Lucas Nussbaum! Ye-Qiong Song?

abdulgawi.saif@loria.fr lucas.nussbaum@loria.fr ye-qiong.song@loria.fr

LUniversité de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
2Qwant Enterprise, F-88000 Epinal, France

January 25, 2019
Per3S 2019 — Performance and Scalability of Storage Systems
Bordeaux, France

4 (1
g UNIVERSITE
@ &t'zta/— @ DE LORRAINE Quant
INVENTEUIRS DU MONDE NUMERIQUE

Evaluations for Discovering Potential 1/O lssues using I0scope

Performing Low-Level

mailto:abdulqawi.saif@loria.fr
mailto:lucas.nussbaum@loria.fr
mailto:ye-qiong.song@loria.fr

Context

How is 1/0O performance often evaluated?

[Storage system X

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope

Context

How is 1/0O performance often evaluated?

[Storage system X](‘

= Communication through high-level interfaces (REST, API, ...)

Test eng.

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope

Context

How is 1/0O performance often evaluated?

[Storage system X](‘

T =4

= Workload execution phase
= Configuration determines which nodes to use

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope

Context

How is 1/0O performance often evaluated?

[Storage system x €
‘ 14
¢ Test eng.

= High-level metrics (e.g., overall I/O throughput, exec. time, ...)
= Results: aggregated and reported by the storage system

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope

Context

How is 1/0O performance often evaluated?

[Storage system x €

J

—
¢ Test eng.

= Lack of 1/O analysis tools (measurements # understanding)

= Potential /0O errors in lower layers are ignored

= Nothing is known about workloads' data access
— Pattern-related errors?

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope

Goal

= Analyzing 1/O patterns! of storage workloads

Requirements

= Flexible and simple as high-level evaluations
= straightforward results

= Work in production environments

— Negligible overhead
— Verified behaviours in lower layers

1. We define |/O access pattern of a given workload as the sequences of the /O requests issued by the target |/O process
during a given workload to access on-disk data files

Performing Low-Level 1/O Evaluations for Discovering Potential I/O Issues using |Oscope

Context

Tracing in the 1/0 evaluation context
I0scope! design & validation
Experiments on MongoDB & Cassandra

Conclusions

! https://github.com/LeUnAiDeS/I0scope (reproducible scenarios provided)

Performing Low-Level |/O Evaluations for Discovering Potential 1/O Issues using |Oscope

https://github.com/LeUnAiDeS/IOscope

Tracing in the |/O evaluation context

= Generic tracing — no filtering mechanism([1]

— Heavy tracing output
— Post-analysis effort is not negligible

[1] Betke, E. et al. Real-time i/o-monitoring of hpc applications with siox, elasticsearch, grafana and fuse.High Performance Computing. (2017)

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope

Tracing in the |/O evaluation context

= Generic tracing — no filtering mechanism([1]

— Heavy tracing output
— Post-analysis effort is not negligible

= Support partial storage media[2]
— Works only with HDDs

[2] Daoud, H., Dagenais, M.R. : Recovering disk storage metrics from low-level trace events. Software : Practice and Experience 48(5), (2018)

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope

Tracing in the |/O evaluation context

= Generic tracing — no filtering mechanism([1]

— Heavy tracing output
— Post-analysis effort is not negligible

= Support partial storage media[2]
— Works only with HDDs

= Partial coverage of filesystems[3]

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope

Tracing in the |/O evaluation context

= Generic tracing — no filtering mechanism([1]

— Heavy tracing output
— Post-analysis effort is not negligible

= Support partial storage media[2]
— Works only with HDDs

= Partial coverage of filesystems[3]

[3] Jeong, S. et al. : Androstep : Android storage performance analysis tool. In : Software Engineering (Workshops). vol. 13, pp. 327-340 (2013)

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope

Tracing in the |/O evaluation context

= Generic tracing — no filtering mechanism([1]

— Heavy tracing output
— Post-analysis effort is not negligible

= Support partial storage media[2]
— Works only with HDDs

= Partial coverage of filesystems[3]
= Modified kernel is required|3]

[3] Jeong, S. et al. : Androstep : Android storage performance analysis tool. In : Software Engineering (Workshops). vol. 13, pp. 327-340 (2013)

Performing Low-Level I/O Evaluations for Discovering Potential 1/O Issues using |Oscope

Tracing in the |/O evaluation context

= Generic tracing — no filtering mechanism([1]
— Heavy tracing output
— Post-analysis effort is not negligible

= Support partial storage media[2]
— Works only with HDDs

= Partial coverage of filesystems[3]
= Modified kernel is required|3]

= Many tracing frameworks for |/O extrapolation[4,5,6,7,8]
— Different scope — traces are more important than workloads!

[4] Luo, X et al. : Hpc i/o trace extrapolation. In : Proceedings of the 4th Workshop on Extreme Scale Programming Tools. (2015)

[5] Luo, X et al. : Scalaioextrap : Elastic i/o tracing and extrapolation. In : Parallel and Distributed Processing Symposium (IPDPS), (2017)

[6] Chahal, D et al. : Performance extrapolation of io intensive workloads : Work in progress. 7th International Conf. on Perf. Eng. (2016)

[7] Virk, R et al. : Trace replay based i/o performance studies for enterprise workload migration. In : 2nd Annual Conference of CMG India. (2015)
[8] Tak, B et al. : Pseudoapp : Performance prediction for application migration to cloud. In : Integrated Network Management (IM 2013)

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope

Tracing in the |/O evaluation context

= Generic tracing — no filtering mechanism([1]

— Heavy tracing output
— Post-analysis effort is not negligible

= Support partial storage media[2]
— Works only with HDDs
= Partial coverage of filesystems|[3]
= Modified kernel is required|3]
= Many tracing frameworks for |/O extrapolation[4,5,6,7,8]
— Different scope — traces are more important than workloads!
= Tools like DTrace, SystemTap, LT Tng use dynamic loading
— Usage suitability is affected (e.g., signed kernels, no compilation tools)

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope

Tracing in the |/O evaluation context

= Generic tracing — no filtering mechanism([1]

— Heavy tracing output
— Post-analysis effort is not negligible

= Support partial storage media[2]
— Works only with HDDs
= Partial coverage of filesystems|[3]
= Modified kernel is required|3]
= Many tracing frameworks for |/O extrapolation[4,5,6,7,8]
— Different scope — traces are more important than workloads!
= Tools like DTrace, SystemTap, LT Tng use dynamic loading
— Usage suitability is affected (e.g., signed kernels, no compilation tools)
= Partial coverage of /O methods such as mmap|[9,10,11]

[9] Mantri, S.G. : Efficient In-Depth 10 Tracing and its application for optimizing systems. Virginia Tech (2014)
[10] IOVISOR BCC Project’s slower tools (fileslower, extaslower).
[11] IOVISOR BCC Project’s I0snoop tools.

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope

IOscope design & validation

I0scope is based on eBPF. What is eBPF?

= A recent tracing and filtering technology

= Connect to all data sources: (Kprobes, Uprobes, tracepoints, ...)
= Almost near-zero overhead (4 ns per syscall)?

= Formally adopted by the Linux kernel (> Linux 3.19)

= Has a lot of front-end projects like IOVISOR’s BCC
— No more byte code!
— Towards precise-objective tracing

Userspace Processes

Userspace

Kernel space
BPF-maps

_encapulated data

Verifier

BPF VM

BPF syscall

eBPF's basic components

2. Starovoitov, A. : https ://lwn.net/Articles/598545/ (2014)

Performing Low-Level 1/O Evaluations for Discovering Potential I/O Issues using |Oscope 6 /15

IOscope design & validation

I0scope tracer: uncovering 1/O patterns for storage workloads

= filtering-based tracing mechanism 3
— Reduce the collected data by an order of magnitude
— Less interceptions = lower overhead (/eq 0.08%)
— Tiny tracing granularities (e.g. R/W operations)
= Two tools for:
— 1/0 workloads issued using syscalls
— memory mapped-files workloads
= Collect specific data {file offsets, size, latency, timestamps, op.Mode}
= Useful for in-production usage

5| User space Pi virtual memory
3 Variations of I10scope toolkit Read or write
3 [CICED . .lhnﬁ,:'&"'lf-.;.. Oscop ! Ri[R2 [[Ro)[Otherdua)
=| Kernel space - ased | [{Oscope 10scope 7 ~ < SRS <
£ VS read | Filtering base , 2, | N
° . classic mmap ! 2,
4 A
3 Filesystem Sy
3 - X
g Block device y 2
] It b
% 1/O Scheduler Get data "t :
Device manager Disk file (inode)
Physical storage
10scope overall design
3. Several filters are applied in both kernel and userspace pair during collecting traces (pid, files, I/O operations, ...)

Performing Low-Level 1/O Evaluations for Discovering Potential I/O Issues using |Oscope

IOscope design & validation

I0scope validation

= Linux kernel 4.9.0
= Flexible Input/Output (FIO) benchmark is used
— Generate diverse workloads / several |/O

methods
E.g. rand reading workload for mmap :
fio —name=testfile -rw=randread
-ioengine=mmap -direct=0 -size=10G
—numj obs=1 —group_report 1ng How IOscope catches I/O traces

FIO Benchmark

@generate
& run a selected

— workload Target file(s)
Tnode(s)

[IOscz)pe,classic ‘ 10scope_mmap]

TABLE — Validated 1/O access modes and workloads

Tested workloads : read, write, randread,

Fio 10engine Target syscalls randwrite, readwrite, and randreadwrite
Sync read, write all
Psync pread, pwrite all
Pvsync preadv, pwritev all
Pvsync2 preadv2, pwritev2 all
posixaio aio_read, aio_ write all
Mmap mmap, memcpy all

Performing Low-Level 1/O Evaluations for Discovering Potential I/O Issues using |Oscope

IOscope design & validation

I0scope validation

= Linux kernel 4.9.0

= Flexible Input/Output (FIO) benchmark is used
— Generate diverse workloads / several |/O
methods
E.g. rand reading workload for mmap :
fio -name=testfile -rw=randread [IoSa‘)pe o ‘ TR Sy——]
-ioengine=mmap -direct=0 -size=10G - —
-numjobs=1 -group_reporting

Some results of validated workloads:

FIO Benchmark

@generate
& run a selected

— workload Target file(s)
Tnode(s)

How |0scope catches |/O traces

Read O req. - Wite IO reg

”))
g 1 & ég + mmap mem. faults
E51 3 §2]
a4 2 81 2 |
3° $ < S
5 - 57 EE
2 g4 25 2 S
[l (RS 3
31 &4 it S oA
> v v v T
w0 2000 4000 6000 g 2000 4000 6000 0 20 40 60 80 100

Sequences of I/O requests Sequences of I/O requests Sequences of memory faults

rw workload - Poxisaio |0engine randrw workload - Psync I0engine

r workload - mmap |Oengine
Performing Low-Level 1/O Evaluations for Discovering Potential I/O Issues using |Oscope

Experimentation

Objective: Uncovering potential pattern-related issues

Experimental setup

= MongoDB & Cassandra are tested

— MongoDB v3.4 with WiredTiger (classic 1/0)
— Cassandra v3.0.14 (mmap 1/0)

= One client to index a simple int field

= Single server & two-shards cluster configurations

= Hash sharding for clustered configuration — load balancing
= Experiments run on HDDs & SSDs separately

= Cache is cleaned between experiments

= Data contiguity is tested using FIBMAP

Datasets

= Two equally-sized datasets (same characteristics)

(min, avrg, max) in KB | N. of data units | Size (Gb)
(1, 3.47, 6) 20,000,000 docs | 71

= Elements x (int, date, 2 x str[min, max], array[1..4] x string[min, max])

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope

Experimentation - Cassandra results

Single-server Cassandra Distributed Cassandra

80

60

20 30 40 50 60

i

— Read '
——— Write b —— Shard1 (51.8% of data) 1
!

|

Throughput (MB/s)
20 40
Throughput (MB/s)

b --=-shard2 (48.2 % of data)

I n i " i n

R R (U U B A T o

0 200 400 600 800 1000 0 200 400 600
Execution time (secs) Execution time (secs)

1/0O throughput of a single server experiment(HDD) 1/0O throughput of Cassandra's two-nodes cluster (HDD)

Performing Low-Level 1/O Evaluations for Discovering Potential I/O Issues using |Oscope

Experimentation - Cassandra results

Standalone Cassandra (3rd SSTable 35GB)

Page fault offsets (byte)
0e+00 2e+06 4e+068 6e+06 B8e+06

150000 250000
Memory faults

0 50000

1/O pattern of single-server experiment (HDD)

— Clustered experiments also have pure sequential access pattern

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope

Experimentation - MongoDB results

o |
o
o
S
0
o |
2 281
o oY
= =
= =8/
32 a®
< <
g S8
< e N
Fg = o
S
0 500 1000 1500 0 50 100 150 200 250
Execution time (sec) Execution time (sec)
Single-server experiment — HDD Single-server experiment — SSD

Performing Low-Level 1/O Evaluations for Discovering Potential I/O Issues using |0scope 11 /15

Experimentation - MongoDB results

Single-server Di D
S
2 o Shard1 (51% of data)
=3 shard2 (49% of data)
31 I i
@ 5Q -8 H
Q z3 @ il
@ @ Q ! ;
H s g i+ Doubling
= = g i :
=5 | 5 8 i the time!
29 2o 5 : ! .
£ £% 2 | Zerogain! |
3 2 5 H
2 g 39 ' f !
g £ ev i
" &] F [}
Shardt (50.27% < H
shard2 (49.72%
oA - o
0 500) 1000 1500 0 200 400. 609 800 1200 0 500 1000 2000 3000
Execution time (sec) Execution time (secs) Execution time (secs)
FIGURE — Results on HDD. Single-server & two different runs of distributed experiments
Single-server Distril MongoDB Disf MongoDB
— Read] ~
§ Write ! :
= i
3 ! =
-3 ° - _3]
@8 & i 0
EN g] i g
= s ! =
=8 <84 ! =g/
g8 gd j g
2 & £
e O g
eR 4 £
£ g 9
" £ FR1.-
8- i Shard1 (46.16% of data)
- 31 shard2 (53.83% of data)
! — Shardt (4615%atd
O A ———— o4 48 o - shard2 (53.83% of date: o
0 50 100 150 200 (250 Iy 50 100 150 200 0 20 40 60 80
Execution time (sec) Execution time (secs) Execution time (secs)

FIGURE — Results on SSD. Single-server & two different runs of distributed experiments
Performing Low-Level |/O Evaluations for Discovering Potential /O Issues using |Oscope

Experimentation - MongoDB results

Standalone MongoDB Standalone MongoDB

6e+10
6e+10

File offsets (byte)
4e+10

File offsets (byte)
4e+10

2 2
T T
$ &
& &
3 3
8 8
K Ky
S 0 500000 1500000 2500000 S 0 500000 1500000 2500000
/0 requests 1/O requests

Single-server I/O patterns: HDD (left) and SSD (right)

rforming Low-Level |/O Evaluations for Discovering Potential 1/O Issues using |Oscope

Experimentation - MongoDB results

Standalone MongoDB Standalone MongoDB Distributed MongoDB (shard1/2) Distributed MongoDB (shard2/2)

° °
$ §
° °
3 3 2 E
58 ¢ 28 28
8o 8o s g”
2% 2% ze 2o
$3 £ 8% $%
H H H H
g] Ze £e
& & b i
s s s s
8 8]]
K . Ky e k 3 - d .
S 0 500000 1500000 2500000 S 0 500000 1500000 2500000 S0 400000 800000 1200000 S0 400000 800000 1200000
/0 requests /0 requests /0 requests /0 requests
Single-server I/O patterns: HDD (left) and SSD (right) HDD - second clustered experiment
= M ax ove rh ea d iS |eSS t h an 0 80 % Distributed MongoDB (shard1/2) Distributed MongoDB (shard2/2)

= Acceptable access pattern on
single-server experiments

File offsets (byte)

00400 1e+10 2e+10 3e+10 4e+10
File offsets (byte)

00400 1e+10 2e+10 3e+10 4e+10

= Seq. access — Random access
on shards!

= Data distribution issue

= SSDs are affected by 1/0
patterns too!

0 400000 800000 1200000 0 500000 1000000 1500000
/0 requests 1/0 requests

SSD — first clustered experiment

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |0scope

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

Gd1| d2 | id3| s

_id 7|_id 8 |_id 10|_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)

_id1 _id 3 _id7 _id5 | id8 _id 10 _id 2 _id19 |_id 11 _id 20 _id 30 _id 27

rec 1 rec 2 rec 3 rec(n-1) rec (n)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level 1/O Evaluations for Discovering Potent

/O lIssues using 10scope 14 / 15

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

Cd1|_id2| id3]_id5 1) Get this doc

_id 7|_id 8 |_id 10|_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)

Jid1 _id3 id7 _ids | ias| _id10o 2 id19 |id11| _id20 _id 30 _id 27
rec 1 rec 2 rec 3 rec(n-1) rec (n)
FIGURE — MongoDB scanning table Vs records’ order on the disk
Performing Low-Level 1/O Evaluations for Discovering Potent /O lIssues using 10scope 14

15

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

Cd1|_id2| id3]_id5 1) Get this doc

_id 7|_id 8 |_id 10|_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)

Jid1 _id3 id7 _ids | ias| _id10o 2 id19 |id11| _id20 _id 30 _id 27
rec 1 rec 2 rec 3 rec(n-1) rec (n)
FIGURE — MongoDB scanning table Vs records’ order on the disk
Performing Low-Level 1/O Evaluations for Discovering Potent /O lIssues using 10scope 14

15

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

Cd1| id2| id3]_id5 1) Get this doc
2) Which doc is next?

_id 7|_id 8 |_id 10|_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)

_d1] 7 _id5 | _ias| _id10 _id2 d1o |d1| _id20 _id30

_id 27

rec 1 rec 2 rec 3 rec(n-1)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope 14 / 15

rec (n)

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1f id2| id3]_id5 1) Get this doc
2) Which doc is next?

_id 7|_id 8 |_id 10|_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)

_d1] 7 _id5 | _ias| _id10 _id2 d1o |d1| _id20 _id30

_id 27

rec 1 rec 2 rec 3 rec(n-1)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope 14 / 15

rec (n)

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1f id2| id3]_id5 1) Get this doc

_id 7|_id 8 |_id 10|_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regardin key sharding (hashed _id)

_id1 _id 3 _id7 _id5 | id8 _id 10 _id 2 _id19 |_id 11 _id 20 _id 30 _id 27

rec 1 rec 2 rec 3 rec(n-1) rec (n)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope 14 / 15

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

Gd1| id2) id3|_id5 1) Get this doc
2) Which doc is next?

_id 7|_id 8 |_id 10|_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)

_d1] 7 _id5 | _ias| _id10 _id2 d1o |d1| _id20 _id30

_id 27

rec 1 rec 2 rec 3 rec(n-1)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope 14 / 15

rec (n)

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

dd1fid2] id3|_id5 1) Get this doc

_id 7|_id 8 |_id 10|_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key shaseifg (hashed _id)
A

_id1 _id 3 _id7 _id5 | id8 _id 10 _id 2 _id19 |_id 11 _id 20 _id 30 _id 27

rec 1 rec 2 rec 3 rec(n-1) rec (n)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope 14 / 15

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

Gd1fid2] id3] id5 1) Get this doc
2) Which doc is next?

_id 7|_id 8 |_id 10|_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)

_d1] 7 _id5 | _ias| _id10 _id2 d1o |d1| _id20 _id30

_id 27

rec 1 rec 2 rec 3 rec(n-1)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope 14 / 15

rec (n)

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

Gd1fid2] id3] id5 1) Get this doc

_id 7|_id 8 |_id 10|_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key stfarding (hashed _i

Jid1 _id3 id7 _ids | ias| _id1o 2 id19 |id11| _id20 _id 30 _id 27
rec 1 rec 2 rec 3 rec(n-1) rec (n)
FIGURE — MongoDB scanning table Vs records’ order on the disk
Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope 14 / 15

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1fid2] id3] a5 1) Get this doc
2) Which doc is next?

_id 7 |_id 8 |_id 10|_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)

_d1] 7 _id5 |_ias| _id10 _id2 d1o |d1| _id20 _id30

_id 27

rec 1 rec 2 rec 3 rec(n-1)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope 14 / 15

rec (n)

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1fid2] id3] a5 1) Get this doc

_id 7 |_id 8 |_id 10|_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (haghed _id)

_d1] 7 _id5 |_ias| _id10 _id2 d1o |d1| _id20 _id30

_id 27

rec 1 rec 2 rec 3 rec(n-1)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level I/O Evaluations for Discovering Potential /O Issues using |Oscope

rec (n)

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1fid2] id3] a5 1) Get this doc
2) Which doc is next?

_id 7 |_id 8 |_id 10|_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)

_d1] 7 _id5 |_ias| _id10 _id2 d1o |d1| _id20 _id30

_id 27

rec 1 rec 2 rec 3 rec(n-1)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope 14 / 15

rec (n)

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1fid2] id3] a5 1) Get this doc

_id 7 |_id 8 |_id 10|_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hasfied _id)

_id1 _id 3 _id7 _id5 | id8 _id 10 _id 2 _id19 |_id 11 _id 20 _id 30 _id 27

rec 1 rec 2 rec 3 rec(n-1) rec (n)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope 14 / 15

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1fid2] id3] a5 1) Get this doc
2) Which doc is next?

_id 7 |_id 8 | id 10]_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)

_d1] 7 _id5 f_ias| _id10 _id2 d1o |d1| _id20 _id30

_id 27

rec 1 rec 2 rec 3 rec(n-1)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope 14 / 15

rec (n)

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1fid2] id3] a5 1) Get this doc

_id 7 |_id 8 | id 10]_id 11]

_id 19| id 20)_id 27

Collection file on disk:

allocated regarding the key sharding (hashed _id) /_\

_id1 _id 3 _id7 _id5 ff id8 _id 10 _id 2 _id19 |_id 11 _id 20 _id 30 _id 27

rec 1 rec 2 rec 3 rec(n-1) rec (n)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level I/O Evaluations for Discovering Potential /O Issues using |Oscope

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1fid2] id3] a5 1) Get this doc
2) Which doc is next?

_id 7 |_id 8 |id 10]_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)

_d1] 7 _id5 fias| _id10 _id2 d1o |d1| _id20 _id30

_id 27

rec 1 rec 2 rec 3 rec(n-1)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope 14 / 15

rec (n)

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1fid2] id3] a5 1) Get this doc

_id 7 |_id 8 |id 10]_id 11]

_id 19| id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)

_id1 _id 3 _id7 _id5 ff id8 _id 10 _id 2 _id19 |_id 11 _id 20 _id 30 _id 27

rec 1 rec 2 rec 3 rec(n-1) rec (n)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level I/O Evaluations for Discovering Potential /O Issues using |Oscope

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1fid2] id3] a5 1) Get this doc
2) Which doc is next?

_id 7 |_id 8 | id 10 id 11]

| _id 19] id 20)_id 27,

Collection file on disk:
allocated regarding the key sharding (hashed _id)

_d1] 7 _id5 fias| _id10 _id2 d1o |di| _id20 _id30

_id 27

rec 1 rec 2 rec 3 rec(n-1)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level 1/O Evaluations for Discovering Potential |/O Issues using |Oscope 14 / 15

rec (n)

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1fid2] id3] a5 1) Get this doc

_id 7 |_id 8 | id 10 id 11]

| _id 19] id 20)_id 27,

Collection file on disk:

allocated regarding the key sharding (hashed _id) '/—\

_id1 _id 3 _id7 _id5 ff id8 _id 10 _id 2 _id19 | id 11 _id 20 _id 30 _id 27

rec 1 rec 2 rec 3 rec(n-1) rec (n)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level I/O Evaluations for Discovering Potential /O Issues using |Oscope

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1fid2] id3] a5 1) Get this doc
2) Which doc is next?

_id 7 |_id 8 | id 10 id 11]

| id 19] id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)

_d1] 7 _id5 fias| _id10 _id2 d1o |d1| _id20 _id30

_id 27

rec 1 rec 2 rec 3 rec(n-1)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level I/O Evaluations for Discovering Potential /O Issues using |Oscope

rec (n)

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1fid2] id3] a5 1) Get this doc

_id 7 |_id 8 | id 10 id 11]

| id 19] id 20)_id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id) /\

_id1 _id 3 _id7 _id5 ff id8 _id 10 _id 2 _id19 |_id 11 _id 20 _id 30 _id 27

rec 1 rec 2 rec 3 rec(n-1) rec (n)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level I/O Evaluations for Discovering Potential /O Issues using |Oscope

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1fid2] id3] a5 1) Get this doc

_id 7 |_id 8 | id 10 id 11]

| id 19] id 20 id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)

_id1 _id 3 _id7 _id5 ff id8 _id 10 _id 2 _id19 |_id 11 _id 20 _id 30 _id 27

rec 1 rec 2 rec 3 rec(n-1) rec (n)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level I/O Evaluations for Discovering Potential /O Issues using |Oscope

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1fid2] id3] a5 1) Get this doc
2) Which doc is next?

_id 7 |_id 8 | id 10 id 11]

| id 19] id 20 id 27

Collection file on disk:
allocated regarding the key sharding (hashed _id)

_d1] 7 _id5 fias| _id10 _id2 d1o |du | _id20 _id30

_id 27

rec 1 rec 2 rec 3 rec(n-1)

FIGURE — MongoDB scanning table Vs records’ order on the disk

Performing Low-Level I/O Evaluations for Discovering Potential /O Issues using |Oscope

rec (n)

Experimentation - MongoDB results

The exact issue
= Mismatch between the scanning table vs data stored on disk

Collection _ids:
used by MongoDB process and WiredTiger

d1fid2] id3] a5 1) Get this doc
2) Which doc is next?

_id 7 |_id 8 | id 10 id 11]

| id 19| id 20] id 27| -

Collection file on disk:
allocated regarding the key sharding (hashed _id)

_id1 _id 3 _id7 _id5 ff id8 _id 10 _id 2 _id19 |_id 11 _id 20 _id 30 _id 27

rec 1 rec 2 rec 3

rec(n-1) rec (n)

FIGURE — MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
= Key-idea: rewrite shards data

= MongoDB updates its view of data
= High cost, but gives insights!

Performing Low-Level 1/O Evaluations for Discovering Potential I/O Issues using |0scope

Conclusion

Conclusions

= Low-level I/O evaluations are not negligable to preserve 1/O
performance

= Systems’ complexity may hide issues

— We showed how an unexpected issue affects the performance of
MongoDB

= |Oscope is proposed to analyse |/O patterns of storage systems

= We demonstrated how it is worthy to use 1Oscope to go beyond
high-level evaluations’ results

Future work

= Extend 10scope to uncover other |/O-related issues

= Performing more performance evaluations on other storage systems
= Further investigation on SSDs and |/O patterns

Performing Low-Level 1/O Evaluations for Discovering Potential I/O Issues using |Oscope

Conclusion

Conclusions

= Low-level I/O evaluations are not negligable to preserve 1/O
performance

= Systems’ complexity may hide issues

— We showed how an unexpected issue affects the performance of
MongoDB

= |Oscope is proposed to analyse |/O patterns of storage systems

= We demonstrated how it is worthy to use 1Oscope to go beyond
high-level evaluations’ results

Future work

= Extend 10scope to uncover other |/O-related issues

= Performing more performance evaluations on other storage systems
= Further investigation on SSDs and |/O patterns

Questions are welcome!

Performing Low-Level 1/O Evaluations for Discovering Potential I/O Issues using |Oscope

