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Context

How is I/O performance often evaluated?

Storage system X
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Context

How is I/O performance often evaluated?

Storage system X

Test eng.

⇒ Communication through high-level interfaces (REST, API, . . . )
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Context

How is I/O performance often evaluated?

Storage system X

Test eng.

⇒ Workload execution phase
⇒ Configuration determines which nodes to use
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Context

How is I/O performance often evaluated?

Storage system X

Test eng.

⇒ High-level metrics (e.g., overall I/O throughput, exec. time, . . . )
⇒ Results: aggregated and reported by the storage system
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Context

How is I/O performance often evaluated?

Storage system X

Test eng.

⇒ Lack of I/O analysis tools (measurements 6= understanding)
⇒ Potential I/O errors in lower layers are ignored
⇒ Nothing is known about workloads’ data access
→ Pattern-related errors?
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Context

Goal
⇒ Analyzing I/O patterns 1 of storage workloads

Requirements
⇒ Flexible and simple as high-level evaluations
⇒ straightforward results
⇒ Work in production environments
→ Negligible overhead
→ Verified behaviours in lower layers

1. We define I/O access pattern of a given workload as the sequences of the I/O requests issued by the target I/O process
during a given workload to access on-disk data files
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Outline

Context

Tracing in the I/O evaluation context

IOscope1 design & validation

Experiments on MongoDB & Cassandra

Conclusions

1 https://github.com/LeUnAiDeS/IOscope (reproducible scenarios provided)
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Tracing in the I/O evaluation context

⇒ Generic tracing – no filtering mechanism[1]
→ Heavy tracing output
→ Post-analysis effort is not negligible

⇒ Support partial storage media[2]
→ Works only with HDDs

⇒ Partial coverage of filesystems[3]
⇒ Modified kernel is required[3]
⇒ Many tracing frameworks for I/O extrapolation[4,5,6,7,8]
→ Different scope – traces are more important than workloads!

⇒ Tools like DTrace, SystemTap, LTTng use dynamic loading
→ Usage suitability is affected (e.g., signed kernels, no compilation tools)

⇒ Partial coverage of I/O methods such as mmap[9,10,11]

[1] Betke, E. et al. Real-time i/o-monitoring of hpc applications with siox, elasticsearch, grafana and fuse.High Performance Computing. (2017)
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[4] Luo, X et al. : Hpc i/o trace extrapolation. In : Proceedings of the 4th Workshop on Extreme Scale Programming Tools. (2015)
[5] Luo, X et al. : Scalaioextrap : Elastic i/o tracing and extrapolation. In : Parallel and Distributed Processing Symposium (IPDPS), (2017)
[6] Chahal, D et al. : Performance extrapolation of io intensive workloads : Work in progress. 7th International Conf. on Perf. Eng. (2016)
[7] Virk, R et al. : Trace replay based i/o performance studies for enterprise workload migration. In : 2nd Annual Conference of CMG India. (2015)
[8] Tak, B et al. : Pseudoapp : Performance prediction for application migration to cloud. In : Integrated Network Management (IM 2013)
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⇒ Many tracing frameworks for I/O extrapolation[4,5,6,7,8]
→ Different scope – traces are more important than workloads!

⇒ Tools like DTrace, SystemTap, LTTng use dynamic loading
→ Usage suitability is affected (e.g., signed kernels, no compilation tools)

⇒ Partial coverage of I/O methods such as mmap[9,10,11]
[9] Mantri, S.G. : Efficient In-Depth IO Tracing and its application for optimizing systems. Virginia Tech (2014)
[10] IOVISOR BCC Project’s slower tools (fileslower, ext4slower).
[11] IOVISOR BCC Project’s IOsnoop tools.
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IOscope design & validation

IOscope is based on eBPF. What is eBPF?
⇒ A recent tracing and filtering technology
⇒ Connect to all data sources: (Kprobes, Uprobes, tracepoints, . . . )
⇒ Almost near-zero overhead (4 ns per syscall) 2
⇒ Formally adopted by the Linux kernel (≥ Linux 3.19)
⇒ Has a lot of front-end projects like IOVISOR’s BCC
→ No more byte code!
→ Towards precise-objective tracing

Userspace Processes
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Kernel space

BPF VM

VerifierB
P

F
 s

ys
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BPF-maps  
encapulated data

eBPF’s basic components

2. Starovoitov, A. : https ://lwn.net/Articles/598545/ (2014)
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IOscope design & validation
IOscope tracer: uncovering I/O patterns for storage workloads
⇒ filtering-based tracing mechanism 3

→ Reduce the collected data by an order of magnitude
→ Less interceptions = lower overhead (leq 0.08%)
→ Tiny tracing granularities (e.g. R/W operations)

⇒ Two tools for:
→ I/O workloads issued using syscalls
→ memory mapped-files workloads

⇒ Collect specific data {file offsets, size, latency, timestamps, op.Mode}
⇒ Useful for in-production usage
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IOscope toolkit Pi
Pi virtual memory
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Disk file (inode)
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Block device
Filesystem

IOscope overall design

3. Several filters are applied in both kernel and userspace pair during collecting traces (pid, files, I/O operations, . . . )
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IOscope design & validation

IOscope validation

⇒ Linux kernel 4.9.0
⇒ Flexible Input/Output (FIO) benchmark is used
→ Generate diverse workloads / several I/O

methods
E.g. rand reading workload for mmap :
fio –name=testfile –rw=randread
–ioengine=mmap –direct=0 –size=10G
–numjobs=1 –group_reporting

FIO Benchmark

pid

IOscope_classic

Target file(s)

generate 
& run a selected 
workload

inode(s)

IOscope_mmap

2

1

How IOscope catches I/O traces

Table – Validated I/O access modes and workloads

Fio IOengine Target syscalls Tested workloads : read, write, randread,
randwrite, readwrite, and randreadwrite

Sync read, write all
Psync pread, pwrite all
Pvsync preadv, pwritev all
Pvsync2 preadv2, pwritev2 all
posixaio aio_read, aio_write all
Mmap mmap, memcpy all
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Some results of validated workloads:
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Experimentation
Objective: Uncovering potential pattern-related issues

Experimental setup
⇒ MongoDB & Cassandra are tested
→ MongoDB v3.4 with WiredTiger (classic I/O)
→ Cassandra v3.0.14 (mmap I/O)

⇒ One client to index a simple int field
⇒ Single server & two-shards cluster configurations
⇒ Hash sharding for clustered configuration – load balancing
⇒ Experiments run on HDDs & SSDs separately
⇒ Cache is cleaned between experiments
⇒ Data contiguity is tested using FIBMAP
Datasets
⇒ Two equally-sized datasets (same characteristics)

(min, avrg, max) in KB N. of data units Size (Gb)
(1, 3.47, 6) 20,000,000 docs 71

⇒ Elements x (int, date, 2 x str[min, max], array[1..4] x string[min, max])
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Experimentation - Cassandra results
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Experimentation - Cassandra results

I/O pattern of single-server experiment (HDD)

→ Clustered experiments also have pure sequential access pattern
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Experimentation - MongoDB results
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Experimentation - MongoDB results
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Figure – Results on HDD. Single-server & two different runs of distributed experiments
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Figure – Results on SSD. Single-server & two different runs of distributed experiments
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Experimentation - MongoDB results

Single-server I/O patterns: HDD (left) and SSD (right)

HDD – second clustered experiment

⇒ Max overhead is less than 0.80%
⇒ Acceptable access pattern on

single-server experiments
⇒ Seq. access → Random access

on shards!
⇒ Data distribution issue
⇒ SSDs are affected by I/O

patterns too!
SSD – first clustered experiment
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Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solution

Performing Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Experimentation - MongoDB results

The exact issue
⇒ Mismatch between the scanning table vs data stored on disk

Figure – MongoDB scanning table Vs records’ order on the disk

We proposed an ad-hoc solution
⇒ Key-idea: rewrite shards data
⇒ MongoDB updates its view of data
⇒ High cost, but gives insights! I/O access pattern a) before & b) after applying

the solutionPerforming Low-Level I/O Evaluations for Discovering Potential I/O Issues using IOscope 14 / 15



Conclusion

Conclusions
⇒ Low-level I/O evaluations are not negligable to preserve I/O

performance
⇒ Systems’ complexity may hide issues
→ We showed how an unexpected issue affects the performance of

MongoDB
⇒ IOscope is proposed to analyse I/O patterns of storage systems
⇒ We demonstrated how it is worthy to use IOscope to go beyond

high-level evaluations’ results
Future work
⇒ Extend IOscope to uncover other I/O-related issues
⇒ Performing more performance evaluations on other storage systems
⇒ Further investigation on SSDs and I/O patterns

Questions are welcome !
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