Knowing your Enemy:
Addressing the I/O bottleneck by Profiling

Andra Hugo
Jean-Thomas Acquaviva
DDN
DDN Advanced Technical Center

- DDN, world leader in HPC storage
 - present in 70% of the TOP500
 - 650 persons WW, ⅔ in engineering

- R&D centers
 - France, Meudon Emerging tech and Software Defined Storage
 → 25+ R&D engineers
 - Japan
 - US East Coast
 - US West Coast
 - India, Pune
Problem Statement – Diversity of stacks

- From HPC to HPDA
- Disruptive innovation of storage systems
 - SSD, NVMe
 - 1000x less latency

- Difficult to understand
 - Scale out analysis

- Difficult to optimize
 - Isolate bottlenecks
Problem Statement – Diversity of loads

Application specific optimizations are not enough!
I/O profile impact on performance: meets IO500

As expected, the log-structure approach in IME means very little performance is lost from ior_easy_write to ior_hard_write.

BeeGFS has an interesting spread. Some great results at the bottom! But some bad ones at the top. The next slide tries to figure out why...

Easy:
- Writes of 1Mo, sequential
- 1 process/file

Hard:
- Writes of 47Ko, random
- 1 shared file
IDIOM: Integrated Device I/O Monitor

► **Main target:**
 - Accelerate & partially automate I/O optimizations
 - Insure performance portability on new storage systems

► **FUI 25: Fond Unique Interministériel**
 - Industry oriented, 1 call per year
 - Tightly coupled to “pole de compétitivité” by Groupes Thématiques

► **Value proposition**
 - Monitor and Characterize IO workloads HPC & HPDA
 - Identify hotspot
 - Propose optimization
 - Identify most suitable storage backend
 - Monitoring and Tracing tool
 - To be deployed from laptop to data center
 - Capture applications I/O with an overhead < 3%

► **700 KE of funding**
IDIOM partners gathering forces

- **DDN Storage**
 - I/O application tracing
- **Criteo**
 - Multi file systems applications
- **Qarnot computing**
 - Distributed systems
- **QuasarDB**
 - Time Series databases for IOT
- **CEA-DAM**
 - Deployment in production systems

- **Telecom SudParis**
 - I/O x86, ARM tracing
- **Université de Bretagne Occidentale**
 - I/O kernel tracing
- **INRIA Grenoble**
 - I/O aware task scheduling
Towards a standard I/O profiling tool

- DDN Dio-Pro
 - Application: Tracing tool for IO characterization

- SupTelecom ParisSud EzTrace
 - Application / SystemTracing tool support x86 / ARM

- UBO VFSMon, FuncMon, and iotracer,
 - Kernel: Low level from laptop to large system

Build a chain of tools exploitable in an industrial context
Main challenges in complex systems

- **Parallelism:**
 - Synchronization in a distributed system
 - Aggregation of parallel execution traces

- **Depth**
 - Multi-level traces

- **Coverage**
 - Two application stacks: HPC and HPDA

- **Execution overhead**

- **Diversity of deployment environments**

- **Define I/O patterns**
 - Automatic learning
ID.IO.M working plan

- User & kernel land information gathering
- Application characterization & I/O system dimensioning
- Infrastructure management for deployment
- API definition for the applications (including visualization)
- ID.IO.M + HPC batch-scheduler -> I/O aware scheduler
- HPC application analysis
- Distributed system validation
- File system impact analysis on I/O
- Smart building application validation
Conclusion: IDIOM’s main objectives

► Address the data deluge in a pragmatic way
► I/O characterization of HPC & HPDA applications
► Deployment on different systems: from laptop to datacenters

► Collect data to understand
► Accelerate & partially automate I/O optimizations
► Insure performance portability on new storage systems

► Kick-Off last October… Still much to do …
Thank you!