
AdaƏƭƈvƞ ReƐƔƞƬt SƂơedƔƋƢƧg ƅoƫ
tƇe I/O ForƖƀƫdƢƍƠ LayƄƑ

Francieli Zanon Boito
Inria Grenoble

Jean Bez and Philippe Navaux
Federal University of Rio Grande do Sul (Brazil)

Ramon Nou, Alberto Miranda and Toni Cortes
Barcelona Supercomputing Center

MotƈƕƚƭiƎn
● Parallel I/O is a challenge for HPC

● Decades of research into optimization techniques
○ MPI collective I/O, reordering aggregation techniques, alignment to stripe locks, I/O

scheduling, …

● Results depend on the workload

○ They are hard to replicate

○ We may lose performance if we use the techniques for inadequate situations

○ Success also depends on the right values for parameters

● This work: apply a reinforcement learning technique to adapt

Sumƌƀƫy

Motivation

The TWINS scheduling algorithm

Adaptive request scheduling

Results

Final remarks

Processing
nodes

I/O
nodes

Parallel
File System

Processing
nodes

I/O
nodes

Parallel
File System

The »ØINº sƂơedƔƋƞƫ

● One request queue per data server

● The I/O node only accesses one of the servers during each time window

● Different I/O nodes access the servers in different orders

J.Bez, F.Z.Boito et al., 2017, "TWINS: server access coordination in the I/O forwarding layer"

Data Server 1 Data Server 2 Data Server 3 Data Server 4

I/O Node 1

#1

#2

#3

#4

I/O Node 2

#1

#2

#3

#4

I/O Node 3

#1

#2

#3

#4

I/O Node 4

#1

#2

#3

#4

Parallel File System

Data Server 1 Data Server 2 Data Server 3 Data Server 4

I/O Node 1

#1

#2

#3

#4

I/O Node 2

#1

#2

#3

#4

I/O Node 3

#1

#2

#3

#4

I/O Node 4

#1

#2

#3

#4

Parallel File System

1D-strided read through 8 I/O nodes Contiguous write through 2 I/O nodes

T¾IÏS reƒƔƥtƒ

128 processes, IOFSL forwarding, 4 PVFS servers, 4GB shared file, 32KB requests

Sumƌƀƫy

Motivation

The TWINS scheduling algorithm

Adaptive request scheduling

Results

Final remarks

ReƈnƅƨƫceƌƄƧt LƞaƑƧƈnƆ ƚƩpƑoƀƜh

● We want to learn, but without a long training phase

● Approach: k-armed bandit problem

○ K possible actions, no prior information

○ take one action at each step, observe reward and update value estimates

● We need to learn one policy per access pattern (what is the best value)
○ Contextual bandit (associative search task)

ApƏƫoƀcƇ
● Each armed bandit "instance": ε-greedy algorithm

● Value estimates are incrementally computed sample averages (reward is bandwidth)

● Global decisions made by a council

● Chose the value that is the best

for most I/O nodes

AcƂeƬs ƏƀƭtƞƑƧ cƋaƬsƈƅƢƜatƈƨƍ

● Context is defined by
○ Operation (read or write)

○ Number of files per process (N-to-1 or N-to-N)

○ Average request size

○ Spatiality (contiguous or strided) <- not readily available

● Use a neural network to detect spatiality from observed metrics
○ It has to be trained but with less experiments than for the whole thing

Sumƌƀƫy

Motivation

The TWINS scheduling algorithm

Adaptive request scheduling

Results

Final remarks

1 - EvaƋƔƚƭe tƇƄ ƚƜceƒƬ pƀƓƭƞrƍ ƝetƄƂƭƢon
▪ Assume right context -> right decision

▪ Offline evaluation (with traces) - precision (%)

▪ Execution (the council is previously told what is the best window size)

Min Mean Median Max

Read 98 99 100 100

Write 53 97 100 100

1 I/O node, file per process, contiguous 256KB requests 8 I/O nodes, shared file, contiguous, 256KB requests

2- EvaƋƔƚƭe tƇƄ ƥƞarƍƈƧg
▪ Assume perfect access pattern detection

▪ Offline evaluation (with traces)

Pattern a - 128 procs, read, shared
file, 8 I/O nodes, 32KB reqs, 1D-strided

Pattern b - 128 procs, write, shared
file, 2 I/O nodes, 32KB reqs, contiguous

Pattern c - 512 procs, read, shared
file, 8 I/O nodes, 32KB reqs, contiguous ε=0.15

Sumƌƀƫy

Motivation

The TWINS scheduling algorithm

Adaptive request scheduling

Results

Final remarks

FinƀƋ ¹ƞƦarƊƬ
● Tuning optimization techniques and parameters is difficult (But important!)

● We used a reinforcement learning technique to learn the best choices
○ Tune the window size of the TWINS scheduler

○ Got to 0.98 of the best performance, ~70% of precision

● This system has a long life!

● Some caveats

○ Need to select a few good values for the parameter

■ Maybe we don't know the optimal, but we already have some improvement

■ Too many choices = slow learning

○ Need to know what are the parameters that define the context

○ Bandwidth as reward

● Now: investigating the trade-off between centralized decision and scalability

FinƀƋ ¹ƞƦarƊƬ

This paper was submitted and is being reviewed

Available at https://hal.inria.fr/hal-01994677

https://hal.inria.fr/hal-01994677

