
Ada v Re t S ed g o
t e I/O For d Lay

Francieli Zanon Boito
Inria Grenoble

Jean Bez and Philippe Navaux
Federal University of Rio Grande do Sul (Brazil)

Ramon Nou, Alberto Miranda and Toni Cortes
Barcelona Supercomputing Center

Mot i n
● Parallel I/O is a challenge for HPC

● Decades of research into optimization techniques
○ MPI collective I/O, reordering aggregation techniques, alignment to stripe locks, I/O

scheduling, …

● Results depend on the workload

○ They are hard to replicate

○ We may lose performance if we use the techniques for inadequate situations

○ Success also depends on the right values for parameters

● This work: apply a reinforcement learning technique to adapt

Sum y

Motivation

The TWINS scheduling algorithm

Adaptive request scheduling

Results

Final remarks

Processing
nodes

I/O
nodes

Parallel
File System

Processing
nodes

I/O
nodes

Parallel
File System

The IN s ed

● One request queue per data server

● The I/O node only accesses one of the servers during each time window

● Different I/O nodes access the servers in different orders

J.Bez, F.Z.Boito et al., 2017, "TWINS: server access coordination in the I/O forwarding layer"

Data Server 1 Data Server 2 Data Server 3 Data Server 4

I/O Node 1

#1

#2

#3

#4

I/O Node 2

#1

#2

#3

#4

I/O Node 3

#1

#2

#3

#4

I/O Node 4

#1

#2

#3

#4

Parallel File System

Data Server 1 Data Server 2 Data Server 3 Data Server 4

I/O Node 1

#1

#2

#3

#4

I/O Node 2

#1

#2

#3

#4

I/O Node 3

#1

#2

#3

#4

I/O Node 4

#1

#2

#3

#4

Parallel File System

1D-strided read through 8 I/O nodes Contiguous write through 2 I/O nodes

T I S re t

128 processes, IOFSL forwarding, 4 PVFS servers, 4GB shared file, 32KB requests

Sum y

Motivation

The TWINS scheduling algorithm

Adaptive request scheduling

Results

Final remarks

Re n ce t L a n p o h

● We want to learn, but without a long training phase

● Approach: k-armed bandit problem

○ K possible actions, no prior information

○ take one action at each step, observe reward and update value estimates

● We need to learn one policy per access pattern (what is the best value)
○ Contextual bandit (associative search task)

Ap o c
● Each armed bandit "instance": ε-greedy algorithm

● Value estimates are incrementally computed sample averages (reward is bandwidth)

● Global decisions made by a council

● Chose the value that is the best

for most I/O nodes

Ac e s t c a s at

● Context is defined by
○ Operation (read or write)

○ Number of files per process (N-to-1 or N-to-N)

○ Average request size

○ Spatiality (contiguous or strided) <- not readily available

● Use a neural network to detect spatiality from observed metrics
○ It has to be trained but with less experiments than for the whole thing

Sum y

Motivation

The TWINS scheduling algorithm

Adaptive request scheduling

Results

Final remarks

1 - Eva e t ce p r et on
▪ Assume right context -> right decision

▪ Offline evaluation (with traces) - precision (%)

▪ Execution (the council is previously told what is the best window size)

Min Mean Median Max

Read 98 99 100 100

Write 53 97 100 100

1 I/O node, file per process, contiguous 256KB requests 8 I/O nodes, shared file, contiguous, 256KB requests

2- Eva e t ar g
▪ Assume perfect access pattern detection

▪ Offline evaluation (with traces)

Pattern a - 128 procs, read, shared
file, 8 I/O nodes, 32KB reqs, 1D-strided

Pattern b - 128 procs, write, shared
file, 2 I/O nodes, 32KB reqs, contiguous

Pattern c - 512 procs, read, shared
file, 8 I/O nodes, 32KB reqs, contiguous ε=0.15

Sum y

Motivation

The TWINS scheduling algorithm

Adaptive request scheduling

Results

Final remarks

Fin ar
● Tuning optimization techniques and parameters is difficult (But important!)

● We used a reinforcement learning technique to learn the best choices
○ Tune the window size of the TWINS scheduler

○ Got to 0.98 of the best performance, ~70% of precision

● This system has a long life!

● Some caveats

○ Need to select a few good values for the parameter

■ Maybe we don't know the optimal, but we already have some improvement

■ Too many choices = slow learning

○ Need to know what are the parameters that define the context

○ Bandwidth as reward

● Now: investigating the trade-off between centralized decision and scalability

Fin ar

This paper was submitted and is being reviewed

Available at https://hal.inria.fr/hal-01994677

https://hal.inria.fr/hal-01994677

